Skip to main content

Bioinformatics for Prohormone and Neuropeptide Discovery

  • Protocol
  • First Online:
Peptidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1719))

Abstract

Neuropeptides and peptide hormones are signaling molecules produced via complex post-translational modifications of precursor proteins known as prohormones. Neuropeptides activate specific receptors and are associated with the regulation of physiological systems and behaviors. The identification of prohormones—and the neuropeptides created by these prohormones—from genomic assemblies has become essential to support the annotation and use of the rapidly growing number of sequenced genomes. Here we describe a methodology for identifying the prohormone complement from genomic assemblies that employs widely available public toolsets and databases. The uncovered prohormone sequences can then be screened for putative neuropeptides to enable accurate proteomic discovery and validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burger E (1988) Peptide hormones and neuropeptides. Proteolytic processing of the precursor regulatory peptides. Arzneimittelforschung 38(5):754–761

    CAS  PubMed  Google Scholar 

  2. von Heijne G (1990) The signal peptide. J Membr Biol 115(3):195–201. https://doi.org/10.1007/bf01868635

    Article  Google Scholar 

  3. Amare A, Hummon AB, Southey BR, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2006) Bridging neuropeptidomics and genomics with bioinformatics: prediction of mammalian neuropeptide prohormone processing. J Proteome Res 5(5):1162–1167. https://doi.org/10.1021/pr0504541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. CK H, Southey BR, Romanova EV, Maruska KP, Sweedler JV, Fernald RD (2016) Identification of prohormones and pituitary neuropeptides in the African cichlid, Astatotilapia Burtoni. BMC Genomics 17(1):660. https://doi.org/10.1186/s12864-016-2914-9

    Article  Google Scholar 

  5. Porter KI, Southey BR, Sweedler JV, Rodriguez-Zas SL (2012) First survey and functional annotation of prohormone and convertase genes in the pig. BMC Genomics 13:582. https://doi.org/10.1186/1471-2164-13-582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Southey BR, Rodriguez-Zas SL, Sweedler JV (2009) Characterization of the prohormone complement in cattle using genomic libraries and cleavage prediction approaches. BMC Genomics 10:228. https://doi.org/10.1186/1471-2164-10-228

    Article  PubMed  PubMed Central  Google Scholar 

  7. Southey BR, Sweedler JV, Rodriguez-Zas SL (2008) A python analytical pipeline to identify prohormone precursors and predict prohormone cleavage sites. Front Neuroinform 2:7. https://doi.org/10.3389/neuro.11.007.2008

    Article  PubMed  PubMed Central  Google Scholar 

  8. Southey BR, Sweedler JV, Rodriguez-Zas SL (2008) Prediction of neuropeptide cleavage sites in insects. Bioinformatics 24(6):815–825. https://doi.org/10.1093/bioinformatics/btn044

    Article  CAS  PubMed  Google Scholar 

  9. Tegge AN, Southey BR, Sweedler JV, Rodriguez-Zas SL (2008) Comparative analysis of neuropeptide cleavage sites in human, mouse, rat, and cattle. Mamm Genome 19(2):106–120. https://doi.org/10.1007/s00335-007-9090-9

    Article  CAS  PubMed  Google Scholar 

  10. Murphy D, Alim FZD, Hindmarch C, Greenwood M, Rogers M, Gan CK, Yealing T, Romanova EV, Southey BR, Sweedler JV (2016) Seasonal adaptations of the hypothalamo-neurohypophyseal system of the Arabian one-humped camel. Paper presented at the Plant and Animal Genome, San Diego, CA, USA. https://pag.confex.com/pag/xxiv/webprogram/Paper18655.html

  11. Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2006) NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res 34 (Web Server issue):W267–272. doi:https://doi.org/10.1093/nar/gkl161

  12. Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2017) NeuroPred application. http://neuroproteomics.scs.illinois.edu/neuropred.htm. Accessed 21 Feb 2017

  13. Southey BR, Rodriguez-Zas SL, Sweedler JV (2006) Prediction of neuropeptide prohormone cleavages with application to RFamides. Peptides 27(5):1087–1098. https://doi.org/10.1016/j.peptides.2005.07.026

    Article  CAS  PubMed  Google Scholar 

  14. Southey BR, Rodriguez Zas SL (2017) PepShop application. http://stagbeetle.animal.uiuc.edu/pepshop. Accessed 21 Feb 2017

  15. Grimmelikhuijzen CJ, Hauser F (2012) Mini-review: the evolution of neuropeptide signaling. Regul Pept 177(Suppl):S6–S9. https://doi.org/10.1016/j.regpep.2012.05.001

    Article  PubMed  Google Scholar 

  16. Romanova EV, Sweedler JV (2015) Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol Sci 36(9):579–586. https://doi.org/10.1016/j.tips.2015.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Glasauer SM, Neuhauss SC (2014) Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Gen Genomics 289(6):1045–1060. https://doi.org/10.1007/s00438-014-0889-2

    Article  CAS  Google Scholar 

  18. Coordinators NR (2017) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 45(D1):D12–D17. https://doi.org/10.1093/nar/gkw1071

    Article  Google Scholar 

  19. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L, Giron CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Keenan S, Lavidas I, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R, Nuhn M, Parker A, Patricio M, Pignatelli M, Rahtz M, Riat HS, Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP, Zadissa A, Birney E, Harrow J, Muffato M, Perry E, Ruffier M, Spudich G, Trevanion SJ, Cunningham F, Aken BL, Zerbino DR, Flicek P (2016) Ensembl 2016. Nucleic Acids Res 44(D1):D710–D716. https://doi.org/10.1093/nar/gkv1157

    Article  CAS  PubMed  Google Scholar 

  20. UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212. https://doi.org/10.1093/nar/gku989

    Google Scholar 

  21. Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, Murphy MR, O’Leary NA, Pujar S, Rajput B, Rangwala SH, Riddick LD, Shkeda A, Sun H, Tamez P, Tully RE, Wallin C, Webb D, Weber J, Wu W, DiCuccio M, Kitts P, Maglott DR, Murphy TD, Ostell JM (2014) RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42(Database issue):D756–D763. https://doi.org/10.1093/nar/gkt1114

    Article  CAS  PubMed  Google Scholar 

  22. Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2017) NeuroPred sequence data. http://stagbeetle.animal.uiuc.edu/neuropred/sequences/Sequencedata.html. Accessed 21 Feb 2017

  23. Liu F, Baggerman G, Schoofs L, Wets G (2008) The construction of a bioactive peptide database in Metazoa. J Proteome Res 7(9):4119–4131. https://doi.org/10.1021/pr800037n

    Article  CAS  PubMed  Google Scholar 

  24. Burbach JP (2010) Neuropeptides from concept to online database www.neuropeptides.nl. Eur J Pharmacol 626(1):27–48. https://doi.org/10.1016/j.ejphar.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  25. Falth M, Skold K, Norrman M, Svensson M, Fenyo D, Andren PE (2006) SwePep, a database designed for endogenous peptides and mass spectrometry. Mol Cell Proteomics 5(6):998–1005. https://doi.org/10.1074/mcp.M500401-MCP200

    Article  PubMed  Google Scholar 

  26. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

  27. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  28. Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14(5):988–995. https://doi.org/10.1101/gr.1865504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilkinson TN, Speed TP, Tregear GW, Bathgate RA (2005) Evolution of the relaxin-like peptide family. BMC Evol Biol 5:14. https://doi.org/10.1186/1471-2148-5-14

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wysolmerski JJ (2012) Parathyroid hormone-related protein: an update. J Clin Endocrinol Metab 97(9):2947–2956. https://doi.org/10.1210/jc.2012-2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhattacharya P, Yan YL, Postlethwait J, Rubin DA (2011) Evolution of the vertebrate pth2 (tip39) gene family and the regulation of PTH type 2 receptor (pth2r) and its endogenous ligand pth2 by hedgehog signaling in zebrafish development. J Endocrinol 211(2):187–200. https://doi.org/10.1530/JOE-10-0439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guerreiro PM, Renfro JL, Power DM, Canario AV (2007) The parathyroid hormone family of peptides: structure, tissue distribution, regulation, and potential functional roles in calcium and phosphate balance in fish. Am J Physiol Regul Integr Comp Physiol 292(2):R679–R696. https://doi.org/10.1152/ajpregu.00480.2006

    Article  CAS  PubMed  Google Scholar 

  33. NCBI (2017) Gene database. https://www.ncbi.nlm.nih.gov/gene/. Accessed 21 Feb 2017

  34. NCBI (2017) Protein database. https://www.ncbi.nlm.nih.gov/protein/. Accessed 21 Feb 2017

  35. Nathoo AN, Moeller RA, Westlund BA, Hart AC (2001) Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci U S A 98(24):14000–14005. https://doi.org/10.1073/pnas.241231298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriguez-Zas SL, Schoofs L, Robinson GE, Sweedler JV (2006) From the genome to the proteome: uncovering peptides in the Apis brain. Science 314(5799):647–649. https://doi.org/10.1126/science.1124128

    Article  CAS  PubMed  Google Scholar 

  37. Gustincich S, Batalov S, Beisel KW, Bono H, Carninci P, Fletcher CF, Grimmond S, Hirokawa N, Jarvis ED, Jegla T, Kawasawa Y, Lemieux J, Miki H, Raviola E, Teasdale RD, Tominaga N, Yagi K, Zimmer A, Hayashizaki Y, Okazaki Y, RIKEN GER Group; GSL Members (2003) Analysis of the mouse transcriptome for genes involved in the function of the nervous system. Genome Res 13(6B):1395–1401. https://doi.org/10.1101/gr.1135303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi L, Ko ML, Abbott LC, Ko GY (2012) Identification of Peptide Lv, a novel putative neuropeptide that regulates the expression of L-type voltage-gated calcium channels in photoreceptors. PLoS One 7(8):e43091. https://doi.org/10.1371/journal.pone.0043091

  39. Mirabeau O, Perlas E, Severini C, Audero E, Gascuel O, Possenti R, Birney E, Rosenthal N, Gross C (2007) Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res 17(3):320–327. https://doi.org/10.1101/gr.5755407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sonmez K, Zaveri NT, Kerman IA, Burke S, Neal CR, Xie X, Watson SJ, Toll L (2009) Evolutionary sequence modeling for discovery of peptide hormones. PLoS Comput Biol 5(1):e1000258. https://doi.org/10.1371/journal.pcbi.1000258

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ozawa A, Lindberg I, Roth B, Kroeze WK (2010) Deorphanization of novel peptides and their receptors. AAPS J 12(3):378–384. https://doi.org/10.1208/s12248-010-9198-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. NCBI (2017) Transcriptome Shotgun Assembly database. https://www.ncbi.nlm.nih.gov/genbank/tsa/. Accessed 21 Feb 2017

  43. Suarez-Bregua P, Torres-Nunez E, Saxena A, Guerreiro P, Braasch I, Prober DA, Moran P, Cerda-Reverter JM, SJ D, Adrio F, Power DM, Canario AV, Postlethwait JH, Bronner ME, Canestro C, Rotllant J (2017) Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brain-to-bone signaling pathway. FASEB J 31(2):569–583. https://doi.org/10.1096/fj.201600815R

    Article  CAS  PubMed  Google Scholar 

  44. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285. https://doi.org/10.1093/nar/gkv1344

    Article  CAS  PubMed  Google Scholar 

  45. Dores RM, Baron AJ (2011) Evolution of POMC: origin, phylogeny, posttranslational processing, and the melanocortins. Ann N Y Acad Sci 1220:34–48. https://doi.org/10.1111/j.1749-6632.2010.05928.x

    Article  CAS  PubMed  Google Scholar 

  46. Huerta-Cepas J, Serra F, Bork P (2016) ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol 33(6):1635–1638. https://doi.org/10.1093/molbev/msw046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. ETE G (2017) GenomeNet ETE3 application. http://www.genome.jp/tools/ete/. Accessed 21 Feb 2017

  48. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786. https://doi.org/10.1038/nmeth.1701

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health, Award No. P30 DA018310 from the National Institute on Drug Abuse (NIDA), the US Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) project No. ILLU-538-909, and the National Science Foundation, Award No. CHE-16-06791. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan V. Sweedler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Southey, B.R., Romanova, E.V., Rodriguez-Zas, S.L., Sweedler, J.V. (2018). Bioinformatics for Prohormone and Neuropeptide Discovery. In: Schrader, M., Fricker, L. (eds) Peptidomics. Methods in Molecular Biology, vol 1719. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7537-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7537-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7536-5

  • Online ISBN: 978-1-4939-7537-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics