Skip to main content

Functional Diffusion Magnetic Resonance Imaging

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1718))

Abstract

Functional diffusion magnetic resonance imaging (fDMRI) is a noninvasive technique that allows elucidating physiological and anatomical changes at a microscopic scale by detection of water molecular displacements in tissue structures. These displacements likely reflect microstructural changes associated with neuronal or glial cells activation. In this chapter, we will describe the physical and biological concepts of fDMRI and how images of brain activation can be acquired in a preclinical setup.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, Hammoud DA, Rustin GJ, Taouli B, Choyke PL (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2):102–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Le Bihan D (2007) The ‘wet mind’: water and functional neuroimaging. Phys Med Biol 52(7):R57–R90. https://doi.org/10.1088/0031-9155/52/7/r02

    Article  PubMed  Google Scholar 

  3. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480. https://doi.org/10.1038/nrn1119

    Article  PubMed  Google Scholar 

  4. Einstein A (1956) Investigations on the theory of the Brownian movement. Courier Corporation, Dover Publications, NY

    Google Scholar 

  5. Le Bihan D (1995) Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 8(7–8):375–386

    Article  PubMed  Google Scholar 

  6. Chilla GS, Tan CH, Xu C, Poh CL (2015) Diffusion weighted magnetic resonance imaging and its recent trend—a survey. Quant Imaging Med Surg 5(3):407–422. https://doi.org/10.3978/j.issn.2223-4292.2015.03.01

    PubMed  PubMed Central  Google Scholar 

  7. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292

    Article  CAS  Google Scholar 

  8. Stejskal E (1965) Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J Chem Phys 43(10):3597–3603

    Article  Google Scholar 

  9. Clark CA, Le Bihan D (2000) Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med 44(6):852–859

    Article  CAS  PubMed  Google Scholar 

  10. Le Bihan D, Urayama S, Aso T, Hanakawa T, Fukuyama H (2006) Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc Natl Acad Sci U S A 103(21):8263–8268. https://doi.org/10.1073/pnas.0600644103

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yablonskiy DA, Bretthorst GL, Ackerman JJ (2003) Statistical model for diffusion attenuated MR signal. Magn Reson Med 50(4):664–669. https://doi.org/10.1002/mrm.10578

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 257(3):102–109

    Article  CAS  PubMed  Google Scholar 

  13. Le Bihan D (2012) Diffusion, confusion and functional MRI. NeuroImage 62(2):1131–1136

    Article  PubMed  Google Scholar 

  14. Steier R, Aradi M, Pal J, Perlaki G, Orsi G, Bogner P, Galyas F, Bukovics P, Janszky J, Doczi T, Schwarcz A (2012) A biexponential DWI study in rat brain intracellular oedema. Eur J Radiol 81(8):1758–1765. https://doi.org/10.1016/j.ejrad.2011.03.058

    Article  PubMed  Google Scholar 

  15. Assaf Y, Freidlin RZ, Rohde GK, Basser PJ (2004) New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 52(5):965–978

    Article  PubMed  Google Scholar 

  16. Yacoub E, Uludağ K, Uğurbil K, Harel N (2008) Decreases in ADC observed in tissue areas during activation in the cat visual cortex at 9.4 T using high diffusion sensitization. Magn Reson Imaging 26(7):889–896

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lizarbe B, Benítez A, Sánchez-Montañés M, Lago-Fernández LF, Garcia-Martin ML, López-Larrubia P, Cerdán S (2013) Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain. NeuroImage 64:448–457

    Article  PubMed  Google Scholar 

  18. Darquié A, Poline J-B, Poupon C, Saint-Jalmes H, Le Bihan D (2001) Transient decrease in water diffusion observed in human occipital cortex during visual stimulation. Proc Natl Acad Sci 98(16):9391–9395

    Article  PubMed  PubMed Central  Google Scholar 

  19. Miller KL, Bulte DP, Devlin H, Robson MD, Wise RG, Woolrich MW, Jezzard P, Behrens TE (2007) Evidence for a vascular contribution to diffusion FMRI at high b value. Proc Natl Acad Sci 104(52):20967–20972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Team RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  22. Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29(6):804–811

    Article  CAS  PubMed  Google Scholar 

  23. Kanayama S, Kuhara S, Satoh K (1996) In vivo rapid magnetic field measurement and shimming using single scan differential phase mapping. Magn Reson Med 36(4):637–642

    Article  CAS  PubMed  Google Scholar 

  24. Lizarbe B, Lopez-Larrubia P, Cerdan S (2015) fDWI evaluation of hypothalamic appetite regulation pathways in mice genetically deficient in leptin or neuropeptide Y. Neurochem Res 40(12):2628–2638. https://doi.org/10.1007/s11064-015-1596-z

    Article  CAS  PubMed  Google Scholar 

  25. Lizarbe B, Benitez A, Pelaez Brioso GA, Sanchez-Montanes M, Lopez-Larrubia P, Ballesteros P, Cerdan S (2013) Hypothalamic metabolic compartmentation during appetite regulation as revealed by magnetic resonance imaging and spectroscopy methods. Front Neuroenerg 5:6. https://doi.org/10.3389/fnene.2013.00006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant SAF2014-53739-R. RMRO held a contract form the Programme Erasmus + and IG held a predoctoral contract from Ministerio de Economía, Indrustria y Competitividad (MINECO) of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar López-Larrubia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oliveira, R.M.R., Guadilla, I., López-Larrubia, P. (2018). Functional Diffusion Magnetic Resonance Imaging. In: García Martín, M., López Larrubia, P. (eds) Preclinical MRI. Methods in Molecular Biology, vol 1718. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7531-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7531-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7530-3

  • Online ISBN: 978-1-4939-7531-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics