Advertisement

Functional Diffusion Magnetic Resonance Imaging

  • Rita Maria Rocha Oliveira
  • Irene Guadilla
  • Pilar López-Larrubia
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)

Abstract

Functional diffusion magnetic resonance imaging (fDMRI) is a noninvasive technique that allows elucidating physiological and anatomical changes at a microscopic scale by detection of water molecular displacements in tissue structures. These displacements likely reflect microstructural changes associated with neuronal or glial cells activation. In this chapter, we will describe the physical and biological concepts of fDMRI and how images of brain activation can be acquired in a preclinical setup.

Key words

Magnetic resonance imaging Functional imaging Diffusion imaging Diffusion biexponential parameters 

Notes

Acknowledgments

This work was supported by grant SAF2014-53739-R. RMRO held a contract form the Programme Erasmus + and IG held a predoctoral contract from Ministerio de Economía, Indrustria y Competitividad (MINECO) of Spain.

References

  1. 1.
    Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, Hammoud DA, Rustin GJ, Taouli B, Choyke PL (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2):102–125CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Le Bihan D (2007) The ‘wet mind’: water and functional neuroimaging. Phys Med Biol 52(7):R57–R90. https://doi.org/10.1088/0031-9155/52/7/r02 CrossRefPubMedGoogle Scholar
  3. 3.
    Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480. https://doi.org/10.1038/nrn1119 CrossRefPubMedGoogle Scholar
  4. 4.
    Einstein A (1956) Investigations on the theory of the Brownian movement. Courier Corporation, Dover Publications, NYGoogle Scholar
  5. 5.
    Le Bihan D (1995) Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 8(7–8):375–386CrossRefPubMedGoogle Scholar
  6. 6.
    Chilla GS, Tan CH, Xu C, Poh CL (2015) Diffusion weighted magnetic resonance imaging and its recent trend—a survey. Quant Imaging Med Surg 5(3):407–422. https://doi.org/10.3978/j.issn.2223-4292.2015.03.01 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292CrossRefGoogle Scholar
  8. 8.
    Stejskal E (1965) Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J Chem Phys 43(10):3597–3603CrossRefGoogle Scholar
  9. 9.
    Clark CA, Le Bihan D (2000) Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med 44(6):852–859CrossRefPubMedGoogle Scholar
  10. 10.
    Le Bihan D, Urayama S, Aso T, Hanakawa T, Fukuyama H (2006) Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc Natl Acad Sci U S A 103(21):8263–8268. https://doi.org/10.1073/pnas.0600644103 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yablonskiy DA, Bretthorst GL, Ackerman JJ (2003) Statistical model for diffusion attenuated MR signal. Magn Reson Med 50(4):664–669. https://doi.org/10.1002/mrm.10578 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mori S, Barker PB (1999) Diffusion magnetic resonance imaging: its principle and applications. Anat Rec 257(3):102–109CrossRefPubMedGoogle Scholar
  13. 13.
    Le Bihan D (2012) Diffusion, confusion and functional MRI. NeuroImage 62(2):1131–1136CrossRefPubMedGoogle Scholar
  14. 14.
    Steier R, Aradi M, Pal J, Perlaki G, Orsi G, Bogner P, Galyas F, Bukovics P, Janszky J, Doczi T, Schwarcz A (2012) A biexponential DWI study in rat brain intracellular oedema. Eur J Radiol 81(8):1758–1765. https://doi.org/10.1016/j.ejrad.2011.03.058 CrossRefPubMedGoogle Scholar
  15. 15.
    Assaf Y, Freidlin RZ, Rohde GK, Basser PJ (2004) New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 52(5):965–978CrossRefPubMedGoogle Scholar
  16. 16.
    Yacoub E, Uludağ K, Uğurbil K, Harel N (2008) Decreases in ADC observed in tissue areas during activation in the cat visual cortex at 9.4 T using high diffusion sensitization. Magn Reson Imaging 26(7):889–896CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lizarbe B, Benítez A, Sánchez-Montañés M, Lago-Fernández LF, Garcia-Martin ML, López-Larrubia P, Cerdán S (2013) Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain. NeuroImage 64:448–457CrossRefPubMedGoogle Scholar
  18. 18.
    Darquié A, Poline J-B, Poupon C, Saint-Jalmes H, Le Bihan D (2001) Transient decrease in water diffusion observed in human occipital cortex during visual stimulation. Proc Natl Acad Sci 98(16):9391–9395CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Miller KL, Bulte DP, Devlin H, Robson MD, Wise RG, Woolrich MW, Jezzard P, Behrens TE (2007) Evidence for a vascular contribution to diffusion FMRI at high b value. Proc Natl Acad Sci 104(52):20967–20972CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Team RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Google Scholar
  22. 22.
    Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29(6):804–811CrossRefPubMedGoogle Scholar
  23. 23.
    Kanayama S, Kuhara S, Satoh K (1996) In vivo rapid magnetic field measurement and shimming using single scan differential phase mapping. Magn Reson Med 36(4):637–642CrossRefPubMedGoogle Scholar
  24. 24.
    Lizarbe B, Lopez-Larrubia P, Cerdan S (2015) fDWI evaluation of hypothalamic appetite regulation pathways in mice genetically deficient in leptin or neuropeptide Y. Neurochem Res 40(12):2628–2638. https://doi.org/10.1007/s11064-015-1596-z CrossRefPubMedGoogle Scholar
  25. 25.
    Lizarbe B, Benitez A, Pelaez Brioso GA, Sanchez-Montanes M, Lopez-Larrubia P, Ballesteros P, Cerdan S (2013) Hypothalamic metabolic compartmentation during appetite regulation as revealed by magnetic resonance imaging and spectroscopy methods. Front Neuroenerg 5:6. https://doi.org/10.3389/fnene.2013.00006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Rita Maria Rocha Oliveira
    • 1
  • Irene Guadilla
    • 1
  • Pilar López-Larrubia
    • 1
  1. 1.Instituto de Investigaciones Biomédicas “Alberto Sols”CSIC/UAMMadridSpain

Personalised recommendations