Skip to main content

Mapping Functional Connectivity in the Rodent Brain Using Electric-Stimulation fMRI

  • Protocol
  • First Online:
Preclinical MRI

Abstract

Since its discovery in the early 90s, BOLD signal-based functional Magnetic Resonance Imaging (fMRI) has become a fundamental technique for the study of brain activity in basic and clinical research. Functional MRI signals provide an indirect but robust and quantitative readout of brain activity through the tight coupling between cerebral blood flow and neuronal activation, the so-called neurovascular coupling. Combined with experimental techniques only available in animal models, such as intracerebral micro-stimulation, optogenetics or pharmacogenetics, provides a powerful framework to investigate the impact of specific circuit manipulations on overall brain dynamics. The purpose of this chapter is to provide a comprehensive protocol to measure brain activity using fMRI with intracerebral electric micro-stimulation in murine models. Preclinical research (especially in rodents) opens the door to very sophisticated and informative experiments, but at the same time imposes important constrains (i.e., anesthetics, translatability), some of which will be addressed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Crosson B, Ford A, McGregor KM, Meinzer M, Cheshkov S, Li X, Walker-Batson D, Briggs RW (2010) Functional imaging and related techniques: an introduction for rehabilitation researchers. J Rehabil Res Dev 47(2):vii–xxxiv

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878. https://doi.org/10.1038/nature06976

    Article  CAS  PubMed  Google Scholar 

  4. Moreno A, Jego P, de la Cruz F, Canals S (2013) Neurophysiological, metabolic and cellular compartments that drive neurovascular coupling and neuroimaging signals. Front Neuroenerg 5:3. https://doi.org/10.3389/fnene.2013.00003

    Article  Google Scholar 

  5. Jego P, Pacheco-Torres J, Araque A, Canals S (2014) Functional MRI in mice lacking IP3-dependent calcium signaling in astrocytes. J Cereb Blood Flow Metab 34(10):1599–1603. https://doi.org/10.1038/jcbfm.2014.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Greve JM (2011) The BOLD effect. Methods Mol Biol 771:153–169. https://doi.org/10.1007/978-1-61779-219-9_8

    Article  CAS  PubMed  Google Scholar 

  7. Masamoto K, Kanno I (2012) Anesthesia and the quantitative evaluation of neurovascular coupling. J Cereb Blood Flow Metab 32(7):1233–1247. https://doi.org/10.1038/jcbfm.2012.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khubchandani M, Mallick HN, Jagannathan NR, Mohan Kumar V (2003) Stereotaxic assembly and procedures for simultaneous electrophysiological and MRI study of conscious rat. Magn Reson Med 49(5):962–967. https://doi.org/10.1002/mrm.10441

    Article  CAS  PubMed  Google Scholar 

  9. King JA, Garelick TS, Brevard ME, Chen W, Messenger TL, Duong TQ, Ferris CF (2005) Procedure for minimizing stress for fMRI studies in conscious rats. J Neurosci Methods 148(2):154–160. https://doi.org/10.1016/j.jneumeth.2005.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ferris CF, Febo M, Luo F, Schmidt K, Brevard M, Harder JA, Kulkarni P, Messenger T, King JA (2006) Functional magnetic resonance imaging in conscious animals: a new tool in behavioural neuroscience research. J Neuroendocrinol 18(5):307–318. https://doi.org/10.1111/j.1365-2826.2006.01424.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tennant DA, Duran RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10(4):267–277. https://doi.org/10.1038/nrc2817

    Article  CAS  PubMed  Google Scholar 

  12. European Convention for the Protection of vertebrate animals used for experimental and other scientific purposes (2006) Appendix A. Guidelines for accommodation and care of animals (Article 5 of the Convention)

    Google Scholar 

  13. Hendrich KS, Kochanek PM, Melick JA, Schiding JK, Statler KD, Williams DS, Marion DW, Ho C (2001) Cerebral perfusion during anesthesia with fentanyl, isoflurane, or pentobarbital in normal rats studied by arterial spin-labeled MRI. Magn Reson Med 46(1):202–206

    Article  CAS  PubMed  Google Scholar 

  14. Schroeter A, Schlegel F, Seuwen A, Grandjean J, Rudin M (2014) Specificity of stimulus-evoked fMRI responses in the mouse: the influence of systemic physiological changes associated with innocuous stimulation under four different anesthetics. NeuroImage 94:372–384. https://doi.org/10.1016/j.neuroimage.2014.01.046

    Article  CAS  PubMed  Google Scholar 

  15. Sonnay S, Just N, Duarte JM, Gruetter R (2015) Imaging of prolonged BOLD response in the somatosensory cortex of the rat. NMR Biomed 28(3):414–421. https://doi.org/10.1002/nbm.3263

    Article  PubMed  Google Scholar 

  16. Paasonen J, Salo RA, Shatillo A, Forsberg MM, Narvainen J, Huttunen JK, Grohn O (2016) Comparison of seven different anesthesia protocols for nicotine pharmacologic magnetic resonance imaging in rat. Eur Neuropsychopharmacol 26(3):518–531. https://doi.org/10.1016/j.euroneuro.2015.12.034

    Article  CAS  PubMed  Google Scholar 

  17. Maggi CA, Meli A (1986) Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 2: Cardiovascular system. Experientia 42(3):292–297

    Article  CAS  PubMed  Google Scholar 

  18. Moreno A, Morris RG, Canals S (2016) Frequency-dependent gating of hippocampal-neocortical interactions. Cereb Cortex 26(5):2105–2114. https://doi.org/10.1093/cercor/bhv033

    Article  PubMed  Google Scholar 

  19. Pawela CP, Biswal BB, Hudetz AG, Schulte ML, Li R, Jones SR, Cho YR, Matloub HS, Hyde JS (2009) A protocol for use of medetomidine anesthesia in rats for extended studies using task-induced BOLD contrast and resting-state functional connectivity. NeuroImage 46(4):1137–1147. https://doi.org/10.1016/j.neuroimage.2009.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shyu BC, Lin CY, Sun JJ, Sylantyev S, Chang C (2004) A method for direct thalamic stimulation in fMRI studies using a glass-coated carbon fiber electrode. J Neurosci Methods 137(1):123–131. https://doi.org/10.1016/j.jneumeth.2004.02.015

    Article  PubMed  Google Scholar 

  21. Sultan F, Augath M, Murayama Y, Tolias AS, Logothetis N (2011) esfMRI of the upper STS: further evidence for the lack of electrically induced polysynaptic propagation of activity in the neocortex. Magn Reson Imaging 29(10):1374–1381. https://doi.org/10.1016/j.mri.2011.04.005

    Article  PubMed  Google Scholar 

  22. Alvarez-Salvado E, Pallares V, Moreno A, Canals S (2014) Functional MRI of long-term potentiation: imaging network plasticity. Philos Trans R Soc Lond Ser B Biol Sci 369(1633):20130152. https://doi.org/10.1098/rstb.2013.0152

    Article  Google Scholar 

  23. Canals S, Beyerlein M, Murayama Y, Logothetis NK (2008) Electric stimulation fMRI of the perforant pathway to the rat hippocampus. Magn Reson Imaging 26(7):978–986. https://doi.org/10.1016/j.mri.2008.02.018

    Article  PubMed  Google Scholar 

  24. Godino Mdel C, Romera VG, Sanchez-Tomero JA, Pacheco J, Canals S, Lerma J, Vivancos J, Moro MA, Torres M, Lizasoain I, Sanchez-Prieto J (2013) Amelioration of ischemic brain damage by peritoneal dialysis. J Clin Invest 123(10):4359–4363. https://doi.org/10.1172/JCI67284

    Article  PubMed  Google Scholar 

  25. Hadar R, Vengeliene V, Barroeta Hlusicke E, Canals S, Noori HR, Wieske F, Rummel J, Harnack D, Heinz A, Spanagel R, Winter C (2016) Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens. Transl Psychiatry 6(6):e840. https://doi.org/10.1038/tp.2016.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK (2006) Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 96(2):512–521. https://doi.org/10.1152/jn.00126.2006

    Article  CAS  PubMed  Google Scholar 

  27. Pallares V, Moya J, Samper-Belda FJ, Canals S, Moratal D (2015) Neurosurgery planning in rodents using a magnetic resonance imaging assisted framework to target experimentally defined networks. Comput Methods Prog Biomed 121(2):66–76. https://doi.org/10.1016/j.cmpb.2015.05.011

    Article  Google Scholar 

  28. Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A 113(28):7900–7905. https://doi.org/10.1073/pnas.1602413113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Poldrack RA, Mumford JA, Nichols TE (2011) Handbook of functional MRI data analysis. Cambridge University Press, New York

    Book  Google Scholar 

  30. Ashby FG (2011) Statistical analysis of FMRI Data. MIT Press, Cambridge, MA

    Google Scholar 

  31. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, Elsevier, New York

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER funds under grants BFU2015-64380-C2-1-R (S.C.) and BFU2015-64380-C2-2-R (D.M.) and EU Horizon 2020 Program 668863-SyBil-AA grant (S.C.). S.C. acknowledges financial support from the Spanish State Research Agency, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (ref. SEV- 2013-0317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Pacheco-Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pérez-Cervera, L. et al. (2018). Mapping Functional Connectivity in the Rodent Brain Using Electric-Stimulation fMRI. In: García Martín, M., López Larrubia, P. (eds) Preclinical MRI. Methods in Molecular Biology, vol 1718. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7531-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7531-0_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7530-3

  • Online ISBN: 978-1-4939-7531-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics