Dynamic Contrast-Enhanced MRI

  • Jennifer Moroz
  • Stefan A. Reinsberg
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)


Dynamic contrast-enhanced MRI in pre-clinical imaging allows the in-vivo monitoring of vascular, physiological properties in normal and diseased tissue. There is considerable variation in the methods employed owing to the different questions that can be asked and answered about the physiologic alterations as well as morphologic changes in tissue. Here we review the typical decisions in the design and execution of a dynamic contrast-enhanced MRI study in mice although the findings can easily be transferred to other species. Emphasis is placed on highlighting the many pitfalls that wait for the unaware pre-clinical MRI practitioner and that go often unmentioned in the abundant literature dealing with dynamic contrast-enhanced MRI in animal models.

Key words

Pharmacodynamics Gadolinium chelate Blood flow Vessel permeability Ktrans IAUC60 



This work was made possible through support from the Discovery Program of NSERC and CIHR.


  1. 1.
    O’Connor JPB, Aboagye EO, Adams JE, et al (2016) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14:169–186. doi: 10.1038/nrclinonc.2016.162 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Weinmann HJ, Brasch RC, Press WR, et al (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol 142:619–624CrossRefGoogle Scholar
  3. 3.
    Keara Boss M, Muradyan N, Thrall DE (2011) DCE-MRI: a review and applications in veterinary oncology. Vet Comp Oncol 11(2):87–100CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhou Z, Lu ZR (2013) Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(1):1–18. doi: 10.1002/wnan.1198 CrossRefPubMedGoogle Scholar
  5. 5.
    Yan GP, Robinson L, Hogg P (2007) Magnetic resonance imaging contrast agents: overview and perspectives. Radiol 13:e5–e19. doi: 10.1016/j.radi.2006.07.005 CrossRefGoogle Scholar
  6. 6.
    Carr DH, Brown J, Bydder GM, et al (1984) Intravenous chelated gadolinium as a contrast agent in NMR imaging of cerebral tumours. Lancet 323(8375):484–486. doi: 10.1016/S0140-6736(84)92852-6 CrossRefGoogle Scholar
  7. 7.
    Shen Y, Goerner FL, Snyder C, et al (2015) T1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 T. Invest Radiol 50(5):330–338. doi: 10.1097/RLI.0000000000000132 CrossRefPubMedGoogle Scholar
  8. 8.
    Tofts P (2010) T1-weighted DCE imaging concepts: modelling, acquisition and analysis. MAGNETOM Flash 3:30–39Google Scholar
  9. 9.
    Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17(2):357–367CrossRefPubMedGoogle Scholar
  10. 10.
    Larsson HBW, Stubgaard M, Frederiksen JL, et al (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16(1):117–131. doi: 10.1002/mrm.1910160111 CrossRefPubMedGoogle Scholar
  11. 11.
    Brix G, Semmler W, Port R, et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15(4):621–628. doi: 10.1097/00004728-199107000-00018 CrossRefPubMedGoogle Scholar
  12. 12.
    Sourbron SP, Buckley DL (2011) On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Imaging 66(3):735–745. doi: 10.1002/mrm.22861 Google Scholar
  13. 13.
    McIntyre DJO, Ludwig C, Pasan A, et al (2004) A method for interleaved acquisition of a vascular input function for dynamic contrast-enhanced MRI in experimental rat tumours. NMR Biomed 17(3):132–143. doi: 10.1002/nbm.868 CrossRefPubMedGoogle Scholar
  14. 14.
    Pickup S, Zhou R, Glickson J (2003) MRI estimation of the arterial input function in mice1. Acad Radiol 10:963–968. doi: 10.1016/S1076-6332(03)00291-5 CrossRefPubMedGoogle Scholar
  15. 15.
    Ragan DK, Lai SY, Bankson JA (2011) Fast, reproducible measurement of the vascular input function in mice using constrained reconstruction and cardiac sampling. NMR Biomed 24:373–384. doi: 10.1002/nbm.1601 PubMedGoogle Scholar
  16. 16.
    Fruytier AC, Magat J, Colliez F, et al (2014) Dynamic contrast-enhanced MRI in mice at high field: estimation of the arterial input function can be achieved by phase imaging. Magn Reson Med 71(2):544–550. doi: 10.1002/mrm.24682 CrossRefPubMedGoogle Scholar
  17. 17.
    Pathak AP, Artemov D, Bhujwalla ZM (2004) Novel system for determining contrast agent concentration in mouse blood in vivo. Magn Reson Med 51:612–615. doi: 10.1002/mrm.10727 CrossRefPubMedGoogle Scholar
  18. 18.
    Henderson E, Rutt BK, Lee TY (1998) Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 16(9):1057–1073. doi: 10.1016/S0730-725X(98)00130-1 CrossRefPubMedGoogle Scholar
  19. 19.
    Lyng H, Dahle GA, Kaalhus O, et al (1998) Measurement of perfusion rate in human melanoma xenografts by contrast-enhanced magnetic resonance imaging. Magn Reson Med 40:89–98CrossRefPubMedGoogle Scholar
  20. 20.
    Parker GJM, Roberts C, Macdonald A, et al (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56(5):993–1000. doi: 10.1002/mrm.21066 CrossRefPubMedGoogle Scholar
  21. 21.
    Sanz-Requena R, Prats-Montalban J, Marti-Bonmati L, et al (2015) Automatic individual arterial input functions calculated from PCA outperform manual and population-averaged approaches for the pharmacokinetic modeling of DCE-MR images. J Magn Reson Imaging 42(2):477–487. doi: 10.1002/jmri.24805 CrossRefPubMedGoogle Scholar
  22. 22.
    Onxley JD, Yoo DS, Muradyan N, et al (2014) Comprehensive population-averaged arterial input function for dynamic contrast-enhanced vmagnetic resonance imaging of head and neck cancer. Int J Radiat Oncol 89(3):658–665. doi: 10.1016/j.ijrobp.2014.03.006 CrossRefGoogle Scholar
  23. 23.
    Kershaw LE, Cheng MHL (2011) A general dual-bolus approach for quantitative DCE-MRI. Magn Reson Imaging 29(2):160–166. doi: 10.1016/j.mri.2010.08.009 CrossRefPubMedGoogle Scholar
  24. 24.
    Kim TH, Pack NA, Chen L, et al (2010) Quantification of myocardial perfusion using CMR with a radial data acquisition: comparison with a dual-bolus method. J Cardiovasc Magn Reson 12(1):45–52. doi: 10.1186/1532-429X-12-45 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yankeelov TE, Luci JJ, Lepage M, et al (2005) Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging 23(4):519–529. doi: 10.1016/j.mri.2005.02.013 CrossRefPubMedGoogle Scholar
  26. 26.
    Beuzit L, Eliat PA, Brun V, et al (2015) Dynamic contrast-enhanced MRI: study of inter-software accuracy and reproducibility using simulated and clinical data. J Magn Reson Imaging 43(6):1288–300. doi: 10.1002/jmri.25101 CrossRefPubMedGoogle Scholar
  27. 27.
    van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30. doi: 10.1109/MCSE.2011.37 CrossRefGoogle Scholar
  28. 28.
    McKinney W (2010) Data structures for statistical computing in Python. In: van der Walt S, Millman J (eds) Proceedings of the 9th Python in science conference, pp 51–56Google Scholar
  29. 29.
    Brett M, Hanke M, Cipollini B, et al (2016) nibabel: 2.1.0. doi: 10.5281/zenodo.60808
  30. 30.
    Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 41(2):250–251. doi: 10.1063/1.1684482 CrossRefGoogle Scholar
  31. 31.
    Han S, Paulsen JL, Zhu G, et al (2012) Temporal/spatial resolution improvement of in vivo DCE-MRI with compressed sensing-optimized FLASH. Magn Reson Imaging 30(6):741–752. doi: 10.1016/j.mri.2012.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    McGrath DM, Bradley DP, Tessier JL, et al (2009) Comparison of model-based arterial input functions for dynamic contrast-enhanced MRI in tumor bearing rats. Magn Reson Med 61:1173–1184. doi: 10.1002/mrm.21959 CrossRefPubMedGoogle Scholar
  33. 33.
    Moroz J, Wong CL, Yung AC, et al (2014) Rapid measurement of arterial input function in mouse tail from projection phases. Magn Reson Med 71:238–245. doi: 10.1002/mrm.24660 CrossRefPubMedGoogle Scholar
  34. 34.
    Bleeker EJW, van Buchem MA, Webb AG, et al (2010) Phase-based arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 64:358–368. doi: 10.1002/mrm.22420 CrossRefPubMedGoogle Scholar
  35. 35.
    Korporaal JG, van den Berg CAT, van Osch MJP, et al (2011) Phase-based arterial input function measurements in the femoral arteries for quantification of dynamic contrast-enhanced (DCE) MRI and comparison with DCE-CT. Magn Reson Med 66(5):1267–1274. doi: 10.1002/mrm.22905 CrossRefPubMedGoogle Scholar
  36. 36.
    Garpebring A, Wirestam R, Yu J, et al (2011) Phase-based arterial input functions in humans applied to dynamic contrast-enhanced MRI: potential usefulness and limitations. Magn Reson Mater Phy 24(4):233–245. doi: 10.1007/s10334-011-0257-8 CrossRefGoogle Scholar
  37. 37.
    Akbudak E, Norberg RE, Conturo TE (1997) Contrast-agent phase effects: an experimental system for analysis of susceptibility, concentration, and bolus input function kinetics. Magn Reson Med 38:990–1002CrossRefPubMedGoogle Scholar
  38. 38.
    Rukat T, Walker-Samuel S, Reinsberg SA (2015) Dynamic contrast-enhanced MRI in mice: an investigation of model parameter uncertainties. Magn Reson Med 73(5):1979–1987. doi: 10.1002/mrm.25319 CrossRefPubMedGoogle Scholar
  39. 39.
    Cárdenas-Rodríguez J, Howison CM, Pagel MD (2013) A linear algorithm of the reference region model for DCE-MRI is robust and relaxes requirements for temporal resolution. Magn Reson Imaging 31(4):497–507. doi: 10.1016/j.mri.2012.10.008 CrossRefPubMedGoogle Scholar
  40. 40.
    Brix G, Kiessling F, Lucht R, et al (2004) Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52(2):420–429. doi: 10.1002/mrm.20161 CrossRefPubMedGoogle Scholar
  41. 41.
    Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26(8):1004–1027. doi: 10.1002/nbm.2940 CrossRefPubMedGoogle Scholar
  42. 42.
    McPhee KC, Baker JEH, Saatchi K, et al (2012) Delayed bolus arrival time with high molecular weight contrast agent indicates significant necrosis. In: Proceedings of the international society for magnetic resonance in medicine, Melbourne, p. 1528Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Jennifer Moroz
    • 1
  • Stefan A. Reinsberg
    • 1
  1. 1.Department of Physics and AstronomyThe University of British ColumbiaVancouverCanada

Personalised recommendations