Skip to main content

Preclinical Arterial Spin Labeling Measurement of Cerebral Blood Flow

  • Protocol
  • First Online:
Preclinical MRI

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1718))

Abstract

Magnetic resonance imaging has been utilized as a quantitative and noninvasive method to image blood flow. Arterial spin labeling (ASL) is an MRI technique that images blood flow using arterial blood water as an endogenous tracer. Herein we describe the use of ASL to measure cerebral blood flow completely noninvasively in rodents, including methods, analysis, and important considerations when utilizing this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116. https://doi.org/10.1002/mrm.25197

    Article  PubMed  Google Scholar 

  3. Brown GG, Clark C, Liu TT (2007) Measurement of cerebral perfusion with arterial spin labeling: part 2. Applications. J Int Neuropsychol Soc 13:526–538

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wolf RL, Detre JA (2007) Clinical neuroimaging using arterial spin-labeled perfusion MRI. Neurotherapeutics 4:346–359

    Article  PubMed  PubMed Central  Google Scholar 

  5. Telischak NA, Detre JA, Zaharchuk G (2015) Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging 41(5):1165–1180. https://doi.org/10.1002/jmri.24751

    Article  PubMed  Google Scholar 

  6. Shen Q, Fisher M, Sotak CH, Duong TQ (2004) Effects of reperfusion on ADC and CBF pixel-by-pixel dynamics in stroke: characterizing tissue fates using quantitative diffusion and perfusion imaging. J Cereb Blood Flow Metab 24:280–290

    Article  PubMed  PubMed Central  Google Scholar 

  7. Silva AC, Zhang W, Williams DS, Koretsky AP (1995) Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial spin labeling. Magn Reson Med 33:209–214

    Article  CAS  PubMed  Google Scholar 

  8. Sicard K, Shen Q, Brevard ME, Sullivan R, Ferris CF, King JA, Duong TQ (2003) Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J Cereb Blood Flow Metab 23(4):472–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lei H, Grinberg O, Nwaigwe CI, Hou HG, Williams H, Swartz HM, Dunn JF (2001) The effects of ketamine-xylazine anesthesia on cerebral blood flow and oxygenation observed using nuclear magnetic resonance perfusion imaging and electron paramagnetic resonance oximetry. Brain Res 913:174–179

    Article  CAS  PubMed  Google Scholar 

  10. Muir ER, De La Garza B, Duong TQ (2013) Blood flow and anatomical MRI in a mouse model of retinitis pigmentosa. Magn Reson Med 69(1):221–228. https://doi.org/10.1002/mrm.24232

    Article  PubMed  Google Scholar 

  11. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19:701–735

    Article  CAS  PubMed  Google Scholar 

  12. Barbier EL, Lamalle L, Decorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13:496–520

    Article  CAS  PubMed  Google Scholar 

  13. Wong EC (2014) An introduction to ASL labeling techniques. J Magn Reson Imaging 40(1):1–10. https://doi.org/10.1002/jmri.24565

    Article  PubMed  Google Scholar 

  14. Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60(6):1488–1497. https://doi.org/10.1002/mrm.21790

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSSII). Magn Reson Med 39:702–708

    Article  CAS  PubMed  Google Scholar 

  16. Kim S-G (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301

    Article  CAS  PubMed  Google Scholar 

  17. Alsop DC, Detre JA (1998) Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 208(2):410–416. https://doi.org/10.1148/radiology.208.2.9680569

    Article  CAS  PubMed  Google Scholar 

  18. Alsop D, Detre J (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249

    Article  CAS  PubMed  Google Scholar 

  19. Muir ER, Shen Q, Duong TQ (2008) Cerebral blood flow MRI in mice using the cardiac spin-labeling technique. Magn Reson Med 60:744–748

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shen Q, Duong TQ (2011) Background suppression in arterial spin labeling MRI with a separate neck labeling coil. NMR Biomed 24:1111–1118

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thomas DL, Lythgoe MF, van der Weerd L, Ordidge RJ, Gadian DG (2006) Regional variation of cerebral blood flow and arterial transit time in the normal and hypoperfused rat brain measured using continuous arterial spin labeling MRI. J Cereb Blood Flow Metab 26(2):274–282. https://doi.org/10.1038/sj.jcbfm.9600185

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meng Y, Wang P, Kim SG (2012) Simultaneous measurement of cerebral blood flow and transit time with turbo dynamic arterial spin labeling (Turbo-DASL): application to functional studies. Magn Reson Med 68(3):762–771. https://doi.org/10.1002/mrm.23294

    Article  PubMed  Google Scholar 

  23. Debacker CS, Daoust A, Kohler S, Voiron J, Warnking JM, Barbier EL (2016) Impact of tissue T1 on perfusion measurement with arterial spin labeling. Magn Reson Med. https://doi.org/10.1002/mrm.26255

  24. Rajendran R, Lew SK, Yong CX, Tan J, Wang DJ, Chuang KH (2013) Quantitative mouse renal perfusion using arterial spin labeling. NMR Biomed 26(10):1225–1232. https://doi.org/10.1002/nbm.2939

    Article  CAS  PubMed  Google Scholar 

  25. Campbell-Washburn AE, Price AN, Wells JA, Thomas DL, Ordidge RJ, Lythgoe MF (2013) Cardiac arterial spin labeling using segmented ECG-gated Look-Locker FAIR: variability and repeatability in preclinical studies. Magn Reson Med 69(1):238–247. https://doi.org/10.1002/mrm.24243

    Article  PubMed  Google Scholar 

  26. Muir ER, Duong TQ (2011) MRI of retinal and choroidal blood flow with laminar resolution. NMR Biomed 24:216–223

    Article  PubMed  Google Scholar 

  27. Li G, De La Garza B, Shih YY, Muir ER, Duong TQ (2012) Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats. Exp Eye Res 101:90–96. https://doi.org/10.1016/j.exer.2012.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Z, Aguirre GK, Rao H, Wang J, Fernandez-Seara MA, Childress AR, Detre JA (2008) Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magn Reson Imaging 26(2):261–269

    Article  PubMed  Google Scholar 

  29. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40(3):383–396

    Article  CAS  PubMed  Google Scholar 

  30. Herscovitch P, Raichle ME (1985) What is the correct value for the brain-blood partition coefficient for water? J Cereb Blood Flow Metab 5:65–69

    Article  CAS  PubMed  Google Scholar 

  31. Muir ER, Cardenas D, Huang S, Roby J, Li G, Duong TQ (2014) MRI under hyperbaric air and oxygen: effects on local magnetic field and relaxation times. Magn Reson Med 72(4):1176–1181. https://doi.org/10.1002/mrm.25027

    Article  CAS  PubMed  Google Scholar 

  32. Dobre MC, Ugurbil K, Marjanska M (2007) Determination of blood longitudinal relaxation time (T1) at high magnetic field strengths. Magn Reson Imaging 25(5):733–735. https://doi.org/10.1016/j.mri.2006.10.020

    Article  PubMed  Google Scholar 

  33. Wegener S, Wu WC, Perthen JE, Wong EC (2007) Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging. J Magn Reson Imaging 26(4):855–862. https://doi.org/10.1002/jmri.21045

    Article  PubMed  Google Scholar 

  34. Doty FD, Entzminger G, Kulkarni J, Pamarthy K, Staab JP (2007) Radio frequency coil technology for small-animal MRI. NMR Biomed 20(3):304–325. https://doi.org/10.1002/nbm.1149

    Article  PubMed  Google Scholar 

  35. Maccotta L, Detre JA, Alsop DC (1997) The efficiency of adiabatic inversion for perfusion imaging by arterial spin labeling. NMR Biomed 10(4–5):216–221

    Article  CAS  PubMed  Google Scholar 

  36. Wells JA, Lythgoe MF, Gadian DG, Ordidge RJ, Thomas DL (2010) In vivo Hadamard encoded continuous arterial spin labeling (H-CASL). Magn Reson Med 63(4):1111–1118. https://doi.org/10.1002/mrm.22266

    Article  PubMed  Google Scholar 

  37. Maleki N, Dai W, Alsop DC (2012) Optimization of background suppression for arterial spin labeling perfusion imaging. MAGMA 25(2):127–133. https://doi.org/10.1007/s10334-011-0286-3

    Article  PubMed  Google Scholar 

  38. Steger TR, White RA, Jackson EF (2005) Input parameter sensitivity analysis and comparison of quantification model for continuous arterial spin labeling. Magn Reson Med 53:895–903

    Article  PubMed  Google Scholar 

  39. Talagala SL, Ye FQ, Ledden PJ, Chesnick S (2004) Whole-brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 52:131–140

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric R. Muir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Muir, E.R. (2018). Preclinical Arterial Spin Labeling Measurement of Cerebral Blood Flow. In: García Martín, M., López Larrubia, P. (eds) Preclinical MRI. Methods in Molecular Biology, vol 1718. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7531-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7531-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7530-3

  • Online ISBN: 978-1-4939-7531-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics