Preclinical Arterial Spin Labeling Measurement of Cerebral Blood Flow

  • Eric R. MuirEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)


Magnetic resonance imaging has been utilized as a quantitative and noninvasive method to image blood flow. Arterial spin labeling (ASL) is an MRI technique that images blood flow using arterial blood water as an endogenous tracer. Herein we describe the use of ASL to measure cerebral blood flow completely noninvasively in rodents, including methods, analysis, and important considerations when utilizing this technique.

Key words

Arterial spin labeling Blood flow Perfusion Cerebral blood flow Magnetic resonance imaging Rodent 


  1. 1.
    Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116. CrossRefPubMedGoogle Scholar
  3. 3.
    Brown GG, Clark C, Liu TT (2007) Measurement of cerebral perfusion with arterial spin labeling: part 2. Applications. J Int Neuropsychol Soc 13:526–538CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wolf RL, Detre JA (2007) Clinical neuroimaging using arterial spin-labeled perfusion MRI. Neurotherapeutics 4:346–359CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Telischak NA, Detre JA, Zaharchuk G (2015) Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging 41(5):1165–1180. CrossRefPubMedGoogle Scholar
  6. 6.
    Shen Q, Fisher M, Sotak CH, Duong TQ (2004) Effects of reperfusion on ADC and CBF pixel-by-pixel dynamics in stroke: characterizing tissue fates using quantitative diffusion and perfusion imaging. J Cereb Blood Flow Metab 24:280–290CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Silva AC, Zhang W, Williams DS, Koretsky AP (1995) Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial spin labeling. Magn Reson Med 33:209–214CrossRefPubMedGoogle Scholar
  8. 8.
    Sicard K, Shen Q, Brevard ME, Sullivan R, Ferris CF, King JA, Duong TQ (2003) Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J Cereb Blood Flow Metab 23(4):472–481CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lei H, Grinberg O, Nwaigwe CI, Hou HG, Williams H, Swartz HM, Dunn JF (2001) The effects of ketamine-xylazine anesthesia on cerebral blood flow and oxygenation observed using nuclear magnetic resonance perfusion imaging and electron paramagnetic resonance oximetry. Brain Res 913:174–179CrossRefPubMedGoogle Scholar
  10. 10.
    Muir ER, De La Garza B, Duong TQ (2013) Blood flow and anatomical MRI in a mouse model of retinitis pigmentosa. Magn Reson Med 69(1):221–228. CrossRefPubMedGoogle Scholar
  11. 11.
    Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19:701–735CrossRefPubMedGoogle Scholar
  12. 12.
    Barbier EL, Lamalle L, Decorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13:496–520CrossRefPubMedGoogle Scholar
  13. 13.
    Wong EC (2014) An introduction to ASL labeling techniques. J Magn Reson Imaging 40(1):1–10. CrossRefPubMedGoogle Scholar
  14. 14.
    Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60(6):1488–1497. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSSII). Magn Reson Med 39:702–708CrossRefPubMedGoogle Scholar
  16. 16.
    Kim S-G (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301CrossRefPubMedGoogle Scholar
  17. 17.
    Alsop DC, Detre JA (1998) Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 208(2):410–416. CrossRefPubMedGoogle Scholar
  18. 18.
    Alsop D, Detre J (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249CrossRefPubMedGoogle Scholar
  19. 19.
    Muir ER, Shen Q, Duong TQ (2008) Cerebral blood flow MRI in mice using the cardiac spin-labeling technique. Magn Reson Med 60:744–748CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shen Q, Duong TQ (2011) Background suppression in arterial spin labeling MRI with a separate neck labeling coil. NMR Biomed 24:1111–1118CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Thomas DL, Lythgoe MF, van der Weerd L, Ordidge RJ, Gadian DG (2006) Regional variation of cerebral blood flow and arterial transit time in the normal and hypoperfused rat brain measured using continuous arterial spin labeling MRI. J Cereb Blood Flow Metab 26(2):274–282. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Meng Y, Wang P, Kim SG (2012) Simultaneous measurement of cerebral blood flow and transit time with turbo dynamic arterial spin labeling (Turbo-DASL): application to functional studies. Magn Reson Med 68(3):762–771. CrossRefPubMedGoogle Scholar
  23. 23.
    Debacker CS, Daoust A, Kohler S, Voiron J, Warnking JM, Barbier EL (2016) Impact of tissue T1 on perfusion measurement with arterial spin labeling. Magn Reson Med.
  24. 24.
    Rajendran R, Lew SK, Yong CX, Tan J, Wang DJ, Chuang KH (2013) Quantitative mouse renal perfusion using arterial spin labeling. NMR Biomed 26(10):1225–1232. CrossRefPubMedGoogle Scholar
  25. 25.
    Campbell-Washburn AE, Price AN, Wells JA, Thomas DL, Ordidge RJ, Lythgoe MF (2013) Cardiac arterial spin labeling using segmented ECG-gated Look-Locker FAIR: variability and repeatability in preclinical studies. Magn Reson Med 69(1):238–247. CrossRefPubMedGoogle Scholar
  26. 26.
    Muir ER, Duong TQ (2011) MRI of retinal and choroidal blood flow with laminar resolution. NMR Biomed 24:216–223CrossRefPubMedGoogle Scholar
  27. 27.
    Li G, De La Garza B, Shih YY, Muir ER, Duong TQ (2012) Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats. Exp Eye Res 101:90–96. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang Z, Aguirre GK, Rao H, Wang J, Fernandez-Seara MA, Childress AR, Detre JA (2008) Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magn Reson Imaging 26(2):261–269CrossRefPubMedGoogle Scholar
  29. 29.
    Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40(3):383–396CrossRefPubMedGoogle Scholar
  30. 30.
    Herscovitch P, Raichle ME (1985) What is the correct value for the brain-blood partition coefficient for water? J Cereb Blood Flow Metab 5:65–69CrossRefPubMedGoogle Scholar
  31. 31.
    Muir ER, Cardenas D, Huang S, Roby J, Li G, Duong TQ (2014) MRI under hyperbaric air and oxygen: effects on local magnetic field and relaxation times. Magn Reson Med 72(4):1176–1181. CrossRefPubMedGoogle Scholar
  32. 32.
    Dobre MC, Ugurbil K, Marjanska M (2007) Determination of blood longitudinal relaxation time (T1) at high magnetic field strengths. Magn Reson Imaging 25(5):733–735. CrossRefPubMedGoogle Scholar
  33. 33.
    Wegener S, Wu WC, Perthen JE, Wong EC (2007) Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging. J Magn Reson Imaging 26(4):855–862. CrossRefPubMedGoogle Scholar
  34. 34.
    Doty FD, Entzminger G, Kulkarni J, Pamarthy K, Staab JP (2007) Radio frequency coil technology for small-animal MRI. NMR Biomed 20(3):304–325. CrossRefPubMedGoogle Scholar
  35. 35.
    Maccotta L, Detre JA, Alsop DC (1997) The efficiency of adiabatic inversion for perfusion imaging by arterial spin labeling. NMR Biomed 10(4–5):216–221CrossRefPubMedGoogle Scholar
  36. 36.
    Wells JA, Lythgoe MF, Gadian DG, Ordidge RJ, Thomas DL (2010) In vivo Hadamard encoded continuous arterial spin labeling (H-CASL). Magn Reson Med 63(4):1111–1118. CrossRefPubMedGoogle Scholar
  37. 37.
    Maleki N, Dai W, Alsop DC (2012) Optimization of background suppression for arterial spin labeling perfusion imaging. MAGMA 25(2):127–133. CrossRefPubMedGoogle Scholar
  38. 38.
    Steger TR, White RA, Jackson EF (2005) Input parameter sensitivity analysis and comparison of quantification model for continuous arterial spin labeling. Magn Reson Med 53:895–903CrossRefPubMedGoogle Scholar
  39. 39.
    Talagala SL, Ye FQ, Ledden PJ, Chesnick S (2004) Whole-brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 52:131–140CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of Ophthalmology, Research Imaging InstituteUniversity of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations