Advertisement

Dynamic Susceptibility Contrast MRI in Small Animals

  • Pilar López-Larrubia
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)

Abstract

The use of magnetic resonance imaging (MRI) for studying the cerebral perfusion mechanisms is well proved and contrasted in the clinical and research setups. This methodology is a promising tool in assessing numerous brain diseases like intracranial tumors, neurodegeneration processes, mental disorders, injuries and so on. In the preclinical environment, perfusion MRI offers a powerful resource for characterizing pathological models and specially identifying biomarkers to monitor the illness and validate the efficacy of therapeutical approaches. This chapter presents the theoretical bases and experimental protocols of dynamic susceptibility contrast MRI acquisitions for developing perfusion MRI studies in small animals.

Key words

Preclinical MRI Brain perfusion Dynamic susceptibility contrast Bolus tracking Cerebral blood flow Cerebral blood volume Mean transit time Animal model 

Notes

Acknowledgements

This work was supported by grant SAF2014-53739-R.

References

  1. 1.
    Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19(7):701–735. https://doi.org/10.1097/00004647-199907000-00001 CrossRefPubMedGoogle Scholar
  2. 2.
    Le Bihan D (1995) Diffusion, perfusion and functional magnetic resonance imaging. J Mal Vasc 20(3):203–214PubMedGoogle Scholar
  3. 3.
    Le Bihan D (1992) Theoretical principles of perfusion imaging. Application to magnetic resonance imaging. Investig Radiol 27(Suppl 2):S6–11CrossRefGoogle Scholar
  4. 4.
    Jahng GH, Li KL, Ostergaard L, Calamante F (2014) Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol 15(5):554–577. https://doi.org/10.3348/kjr.2014.15.5.554 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Stewart G (1894) Researches on the circulation time in organs and on the influences which affect it: I–III. J Physiol 15:1–27CrossRefGoogle Scholar
  6. 6.
    Kim SG (2012) Perfusion MR imaging: evolution from initial development to functional studies. NeuroImage 62(2):672–675. https://doi.org/10.1016/j.neuroimage.2012.01.015 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    MacDonald ME, Frayne R (2015) Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques. NMR Biomed 28(7):767–791. https://doi.org/10.1002/nbm.3322 CrossRefPubMedGoogle Scholar
  8. 8.
    Buxton RB (2012) Dynamic models of BOLD contrast. NeuroImage 62(2):953–961. https://doi.org/10.1016/j.neuroimage.2012.01.012 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ostergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22(6):710–717. https://doi.org/10.1002/jmri.20460 CrossRefPubMedGoogle Scholar
  10. 10.
    Koshimoto Y, Yamada H, Kimura H, Maeda M, Tsuchida C, Kawamura Y, Ishii Y (1999) Quantitative analysis of cerebral microvascular hemodynamics with T2-weighted dynamic MR imaging. J Magn Reson Imaging 9(3):462–467CrossRefPubMedGoogle Scholar
  11. 11.
    Barbier EL, Lamalle L, Decorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13(4):496–520CrossRefPubMedGoogle Scholar
  12. 12.
    Conturo TE, Akbudak E, Kotys MS, Chen ML, Chun SJ, Hsu RM, Sweeney CC, Markham J (2005) Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging 22(6):697–703. https://doi.org/10.1002/jmri.20457 CrossRefPubMedGoogle Scholar
  13. 13.
    Borges AR, Lopez-Larrubia P, Marques JB, Cerdan SG (2012) MR imaging features of high-grade gliomas in murine models: how they compare with human disease, reflect tumor biology, and play a role in preclinical trials. AJNR Am J Neuroradiol 33(1):24–36. https://doi.org/10.3174/ajnr.A2959 CrossRefPubMedGoogle Scholar
  14. 14.
    López-Larrubia P, Cañadillas-Cárdenas E, Metelo AM, Arias N, Martínez-Maestro M, Salguero LA, Cerdán S (2011) Magnetic resonance imaging of gliomas. In: Chen CC (ed) Advances in the biology, imaging and therapies for glioblastoma. InTech, Rijeka, pp 225–250Google Scholar
  15. 15.
    Liu W, Wang B, Wolfowitz R, Yeh PH, Nathan DE, Graner J, Tang H, Pan H, Harper J, Pham D, Oakes TR, French LM, Riedy G (2013) Perfusion deficits in patients with mild traumatic brain injury characterized by dynamic susceptibility contrast MRI. NMR Biomed 26(6):651–663. https://doi.org/10.1002/nbm.2910 PubMedGoogle Scholar
  16. 16.
    Duong TQ (2013) Magnetic resonance imaging of perfusion-diffusion mismatch in rodent and non-human primate stroke models. Neurol Res 35(5):465–469. https://doi.org/10.1179/1743132813Y.0000000211 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shimizu S (2004) Routes of administration. In: Hans J Hedrich, GBaPP (ed) The laboratory mouse. Academic Press, London, p 14Google Scholar
  18. 18.
    Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29(6):804–811CrossRefPubMedGoogle Scholar
  19. 19.
    Kanayama S, Kuhara S, Satoh K (1996) In vivo rapid magnetic field measurement and shimming using single scan differential phase mapping. Magn Reson Med 36(4):637–642CrossRefPubMedGoogle Scholar
  20. 20.
    Perez-Carro R, Cauli O, Lopez-Larrubia P (2014) Multiparametric magnetic resonance in the assessment of the gender differences in a high-grade glioma rat model. EJNMMI Res 4(1):44. https://doi.org/10.1186/s13550-014-0044-4 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Garcia-Palmero I, Lopez-Larrubia P, Cerdan S, Villalobo A (2013) Nuclear magnetic resonance imaging of tumour growth and neovasculature performance in vivo reveals Grb7 as a novel antiangiogenic target. NMR Biomed 26(9):1059–1069. https://doi.org/10.1002/nbm.2918 CrossRefPubMedGoogle Scholar
  22. 22.
    Yankam Njiwa J, Ratering D, Baltes C, Rudin M (2010) Increasing temporal resolution of DSC perfusion MRI using the analytic image concept. MAGMA 23(4):251–261. https://doi.org/10.1007/s10334-010-0224-9 CrossRefPubMedGoogle Scholar
  23. 23.
    Yin J, Sun H, Yang J, Guo Q (2015) Automated detection of the arterial input function using normalized cut clustering to determine cerebral perfusion by dynamic susceptibility contrast-magnetic resonance imaging. J Magn Reson Imaging 41(4):1071–1078. https://doi.org/10.1002/jmri.24642 CrossRefPubMedGoogle Scholar
  24. 24.
    Duhamel G, Schlaug G, Alsop DC (2006) Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results. Magn Reson Med 55(3):514–523. https://doi.org/10.1002/mrm.20802 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Instituto de Investigaciones Biomédicas “Alberto Sols”CSIC-UAMMadridSpain

Personalised recommendations