In Vivo Pharmacokinetics of Magnetic Nanoparticles

  • Carlos Caro
  • M. Carmen Muñoz-Hernández
  • Manuel Pernia Leal
  • María Luisa García-Martín
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)

Abstract

Over the past few years, many papers have been published on the nanomedical applications of magnetic nanoparticles. However, most studies lack important information about the in vivo behavior of these nanoparticles, which is a critical aspect for their rational design. In this chapter we describe a simple protocol for the in vivo characterization of the pharmacokinetics of magnetic nanoparticles intravenously injected in mice, using basic MRI sequences.

Key words

Magnetic nanoparticles Dynamic T2-weighted MRI Tmapping CPMG Pharmacokinetics Relative enhancement 

Notes

Acknowledgements

The MRI system used in this work has been funded by the Spanish Ministry of Science and Innovation (National Plan for Scientific Research, Development and Technological Innovation 2008-2011) and the European Regional Development Fund (PCT-420000-2010-3).

References

  1. 1.
    Petros RA, Desimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627CrossRefPubMedGoogle Scholar
  2. 2.
    Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6(7):418–422CrossRefPubMedGoogle Scholar
  3. 3.
    Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175CrossRefGoogle Scholar
  4. 4.
    Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99CrossRefPubMedGoogle Scholar
  5. 5.
    Pernia Leal M, Torti A, Riedinger A, La Fleur R, Petti D, Cingolani R, Bertacco R, Pellegrino T (2012) Controlled release of doxorubicin loaded within magnetic thermo-responsive nanocarriers under magnetic and thermal actuation in a microfluidic channel. ACS Nano 6(12):10535–10545CrossRefPubMedGoogle Scholar
  6. 6.
    Gazeau F, Lévy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3(6):831–844CrossRefPubMedGoogle Scholar
  7. 7.
    Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62(2):126–143CrossRefPubMedGoogle Scholar
  8. 8.
    Challenor M, Gong P, Lorenser D, House MJ, Woodward RC, St Pierre T, Fitzgerald M, Dunlop SA, Sampson DD, Iyer KS (2014) The influence of NaYF4:Yb,Er size/phase on the multimodality of co-encapsulated magnetic photon-upconverting polymeric nanoparticles. Dalton Transactions (Cambridge, England: 2003) 43(44):16780–16787. https://doi.org/10.1039/c4dt01597e CrossRefGoogle Scholar
  9. 9.
    Wang B, He X, Zhang Z, Zhao Y, Feng W (2013) Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res 46(3):761–769CrossRefPubMedGoogle Scholar
  10. 10.
    Karakoti AS, Das S, Thevuthasan S, Seal S (2011) PEGylated inorganic nanoparticles. Angewandte Chemie - International Edition 50(9):1980–1994CrossRefPubMedGoogle Scholar
  11. 11.
    Tong S, Hou S, Zheng Z, Zhou J, Bao G (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10(11):4607–4613CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Howard MD, Jay M, Dziubla TD, Lu X (2008) PEGylation of nanocarrier drug delivery systems: state of the art. J Biomed Nanotechnol 4(2):133–148CrossRefGoogle Scholar
  13. 13.
    Yoo JW, Chambers E, Mitragotri S (2010) Factors that control the circulation time of nanoparticles in blood: Challenges, solutions and future prospects. Curr Pharm Des 16(21):2298–2307CrossRefPubMedGoogle Scholar
  14. 14.
    Pernia Leal M, Rivera-Fernandez S, Franco JM, Pozo D, de la Fuente JM, Garcia-Martin ML (2015) Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging. Nanoscale 7(5):2050–2059. https://doi.org/10.1039/c4nr05781c CrossRefPubMedGoogle Scholar
  15. 15.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760CrossRefPubMedGoogle Scholar
  16. 16.
    Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478CrossRefPubMedGoogle Scholar
  17. 17.
    Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5(4):487–495CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12–21. https://doi.org/10.1002/smll.200901158 CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y (2013) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46(3):622–631. https://doi.org/10.1021/ar300031y CrossRefPubMedGoogle Scholar
  20. 20.
    García KP, Zarschler K, Barbaro L, Barreto JA, O'Malley W, Spiccia L, Stephan H, Graham B (2014) Zwitterionic-coated "stealth" nanoparticles for biomedical applications: Recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10(13):2516–2529. https://doi.org/10.1002/smll.201303540 CrossRefGoogle Scholar
  21. 21.
    Moyano DF, Saha K, Prakash G, Yan B, Kong H, Yazdani M, Rotello VM (2014) Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8(7):6748–6755. https://doi.org/10.1021/nn5006478 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jiang Y, Huo S, Mizuhara T, Das R, Lee YW, Hou S, Moyano DF, Duncan B, Liang XJ, Rotello VM (2015) The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanoparticles. ACS Nano 9(10):9986–9993. https://doi.org/10.1021/acsnano.5b03521 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Elci SG, Jiang Y, Yan B, Kim ST, Saha K, Moyano DF, Yesilbag Tonga G, Jackson LC, Rotello VM, Vachet RW (2016) Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano 10(5):5536–5542. https://doi.org/10.1021/acsnano.6b02086 CrossRefPubMedGoogle Scholar
  24. 24.
    Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10(4):487–510. https://doi.org/10.1016/j.nantod.2015.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pelaz B, Del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernández S, De La Fuente JM, Nienhaus GU, Parak WJ (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9(7):6996–7008. https://doi.org/10.1021/acsnano.5b01326 CrossRefPubMedGoogle Scholar
  27. 27.
    Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99(Part A):28–51. https://doi.org/10.1016/j.addr.2015.09.012 CrossRefPubMedGoogle Scholar
  28. 28.
    Ye L, Zhang Y, Yang B, Zhou X, Li J, Qin Z, Dong D, Cui Y, Yao F (2016) Zwitterionic-modified starch-based stealth micelles for prolonging circulation time and reducing macrophage response. ACS Appl Mater Interfaces 8(7):4385–4398. https://doi.org/10.1021/acsami.5b10811 CrossRefPubMedGoogle Scholar
  29. 29.
    Huang P, Liu J, Wang W, Zhang Y, Zhao F, Kong D, Liu J, Dong A (2016) Zwitterionic nanoparticles constructed from bioreducible RAFT–ROP double head agent for shell shedding triggered intracellular drug delivery. Acta Biomater 40:263–272. https://doi.org/10.1016/j.actbio.2015.11.038 CrossRefPubMedGoogle Scholar
  30. 30.
    Pernia Leal M, Caro C, Garcia-Martin ML (2017) Shedding light on zwitterionic magnetic nanoparticles: limitations for in vivo applications. Nanoscale 9(24):8176–8184. https://doi.org/10.1039/c7nr01607g
  31. 31.
    Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279. https://doi.org/10.1021/ja0380852 CrossRefPubMedGoogle Scholar
  32. 32.
    Pernia Leal M, Munoz-Hernandez C, Berry CC, Garcia-Martin M (2015) In vivo pharmacokinetics of T2 contrast agents based on iron oxide nanoparticles: optimization of blood circulation times. RSC Adv 5(94):76883–76891. https://doi.org/10.1039/C5RA15680G CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Carlos Caro
    • 1
  • M. Carmen Muñoz-Hernández
    • 1
  • Manuel Pernia Leal
    • 2
  • María Luisa García-Martín
    • 1
    • 3
  1. 1.BIONAND, Andalusian Centre for Nanomedicine and BiotechnologyJunta de Andalucía, Universidad de MálagaMálagaSpain
  2. 2.Departamento de Química Orgánica y FarmacéuticaUniversidad de SevillaSevillaSpain
  3. 3.Networking Research Center on Bioengineering, Biomaterials and NanomedicineCIBER-BBNMálagaSpain

Personalised recommendations