Advertisement

MRI in the Study of Animal Models of Stroke

  • Pedro Ramos-Cabrer
  • Daniel Padro
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)

Abstract

Stroke consists of the loss of cerebral functions resulting from the interruption of blood supply to a region of the brain, and represents the second cause of death and the leading cause of major disability in adults in Europe. Stroke is a very active field of research at preclinical and clinical levels, and Magnetic Resonance Imaging (MRI) is one of the most powerful tools that scientist and clinicians have for the study of the onset, evolution and consequences of this devastating disease, as well as for the monitoring of the success of available treatments, or for the development of novel therapeutic strategies.

MRI can tackle the study of stroke from different points of view, and at scales ranging from subcellular to systems biology level. Magnetic resonance spectroscopy (MRS) allows the noninvasive measurement of the levels of principal metabolites in the brain, and how they change during the course of the disease, or in response to therapy. Glutamate, in particular, is very important in the field of stroke. Several anatomical MR techniques allow the characterization of the lesion volumes, the formation of cytotoxic and vasogenic edema, changes in cerebral blood flow and volume, structural changes in gray and white matter, the obtaining of the vascular architecture and status, etc. At functional level, diverse modalities of functional MRI (fMRI) allow the assessment of the alteration in the function and organization of neuronal networks of the subject under study, as a consequence of the disease or in response to treatment. Finally, emerging imaging modalities that include temperature and pH mapping of the brain, imaging by chemical exchange saturation transfer effect (CEST), all of them closely related to tissue status, or the use of contrast agents for the targeting of tissue in theranostic approaches or for cell tracking studies in cell-based therapies, etc., are only a few examples of the power and versatility of MRI as a definitive tool for the study of stroke.

In this work we will set our focus on preclinical imaging of stroke models, emphasizing the most commonly used imaging modalities in a stroke-dedicated research laboratory. However, advanced techniques will be briefly discussed, providing references to specialized literature for more advanced readers. Thus, the aim of this chapter consist in the description of a simple imaging protocol for the study of the most important and common aspects of stroke in a research laboratory.

Key words

MRI MRA ADC DWI PWI Stroke Ischemia Angiography Perfusion Diffusion 

Notes

Acknowledgements

We deeply acknowledge Ms. Marta Beraza, from the Molecular Imaging Unit of CIC biomaGUNE for the performance of the MCAo surgery of the rats scanned in this work. We acknowledge the Spanish Ministry of Economy and Competence (Project SAF2014-53413-R), The Basque Government (PI_2015_1_53), Ikerbasque (the Basque Research Foundation), and the European Union (FEDER funds) for financial support.

References

  1. 1.
    Nichols M, Townsend N, Scarborough P, Rayner M (2013) Cardiovascular disease in Europe: epidemiological update. Eur Heart J 34(39):3028–3034. https://doi.org/10.1093/eurheartj/eht356 CrossRefPubMedGoogle Scholar
  2. 2.
    Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basanez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabe E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fevre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gonzalez-Medina D, Gosselin R, Grainger R, Grant B, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Laden F, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Levinson D, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mock C, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O'Donnell M, O'Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA 3rd, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leon FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiebe N, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, AlMazroa MA, Memish ZA (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2197–2223. https://doi.org/10.1016/S0140-6736(12)61689-4 CrossRefPubMedGoogle Scholar
  3. 3.
    Dyken ML (2010) What lessons have we learned in the past 40 years? Stroke 41(6):1073–1075. https://doi.org/10.1161/STROKEAHA.110.584011 CrossRefPubMedGoogle Scholar
  4. 4.
    Hachinski V (2007) The 2005 Thomas Willis Lecture: stroke and vascular cognitive impairment: a transdisciplinary, translational and transactional approach. Stroke 38(4):1396. https://doi.org/10.1161/01.STR.0000260101.08944.e9 CrossRefPubMedGoogle Scholar
  5. 5.
    Hossmann KA (2008) Cerebral ischemia: models, methods and outcomes. Neuropharmacology 55(3):257–270. https://doi.org/10.1016/j.neuropharm.2007.12.004 CrossRefPubMedGoogle Scholar
  6. 6.
    Runck F, Steiner RP, Bautz WA, Lell MM (2008) MR imaging: influence of imaging technique and postprocessing on measurement of internal carotid artery stenosis. AJNR Am J Neuroradiol 29(9):1736–1742. https://doi.org/10.3174/ajnr.A1179 CrossRefPubMedGoogle Scholar
  7. 7.
    Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA, Li L, Fenstermacher JD (2003) Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening. Magn Reson Med 50(2):283–292. https://doi.org/10.1002/mrm.10524 CrossRefPubMedGoogle Scholar
  8. 8.
    Abo-Ramadan U, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, Soinne L, Strbian D, Tatlisumak T (2009) Post-ischemic leakiness of the blood-brain barrier: a quantitative and systematic assessment by Patlak plots. Exp Neurol 219(1):328–333. https://doi.org/10.1016/j.expneurol.2009.06.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Barbier EL, Lamalle L, Decorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13(4):496–520CrossRefPubMedGoogle Scholar
  10. 10.
    Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Perez-Mato M, Rodriguez-Gonzalez R, Brea D, Castillo J (2011) Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab 31(6):1378–1386. https://doi.org/10.1038/jcbfm.2011.3 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ramos-Cabrer P, Campos F, Sobrino T, Castillo J (2011) Targeting the ischemic penumbra. Stroke 42(1 Suppl):S7–11. https://doi.org/10.1161/STROKEAHA.110.596684 CrossRefPubMedGoogle Scholar
  12. 12.
    Weber R, Ramos-Cabrer P, Hoehn M (2006) Present status of magnetic resonance imaging and spectroscopy in animal stroke models. J Cereb Blood Flow Metab 26(5):591–604. https://doi.org/10.1038/sj.jcbfm.9600241 CrossRefPubMedGoogle Scholar
  13. 13.
    Cai K, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H, Detre JA, Reddy R (2012) Magnetic resonance imaging of glutamate. Nat Med 18(2):302–306. https://doi.org/10.1038/nm.2615 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time dependent field gradient. J Chem Phys 42:288–292CrossRefGoogle Scholar
  15. 15.
    Heidenreich JO, Hsu D, Wang G, Jesberger JA, Tarr RW, Zaidat OO, Sunshine JL (2008) Magnetic resonance imaging results can affect therapy decisions in hyperacute stroke care. Acta Radiol 49(5):550–557. https://doi.org/10.1080/02841850801958320 CrossRefPubMedGoogle Scholar
  16. 16.
    Chen F, Ni YC (2012) Magnetic resonance diffusion-perfusion mismatch in acute ischemic stroke: an update. World J Radiol 4(3):63–74. https://doi.org/10.4329/wjr.v4.i3.63 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65(6):1532–1556. https://doi.org/10.1002/mrm.22924 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hajnal JV, Bryant DJ, Kasuboski L, Pattany PM, De Coene B, Lewis PD, Pennock JM, Oatridge A, Young IR, Bydder GM (1992) Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 16(6):841–844CrossRefPubMedGoogle Scholar
  19. 19.
    Wegener S, Weber R, Ramos-Cabrer P, Uhlenkueken U, Sprenger C, Wiedermann D, Villringer A, Hoehn M (2006) Temporal profile of T2-weighted MRI distinguishes between pannecrosis and selective neuronal death after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 26(1):38–47. https://doi.org/10.1038/sj.jcbfm.9600166 CrossRefPubMedGoogle Scholar
  20. 20.
    Van der Linden A, Van Camp N, Ramos-Cabrer P, Hoehn M (2007) Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition. NMR Biomed 20(5):522–545. https://doi.org/10.1002/nbm.1131 CrossRefPubMedGoogle Scholar
  21. 21.
    Dirnagl U (2016) Rodent models of stroke. In: Neuromethods, vol 47. Humana Press, New YorkGoogle Scholar
  22. 22.
    Wang-Fischer Y (2008) Manual of stroke models in rats. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  23. 23.
    Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Molecular Imaging UnitCIC biomaGUNEDonostia-San SebastiánSpain
  2. 2.Ikerbasque, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations