Basic Pulse Sequences in Magnetic Resonance Imaging

  • Daniel Calle
  • Teresa NavarroEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)


Magnetic resonance images are obtained by a combination of different radiofrequency pulses and gradient waveforms applied to the subject inside a magnetic field. There are multiple pulse sequences used in clinical and preclinical studies adjusted to whatever physician or researches want to analyze, from basic anatomic images to accurate diagnostic techniques as diffusion, perfusion, or functional imaging. In this chapter, we present the most used radiofrequency pulse combinations of the two groups of sequences available in magnetic resonance imaging: spin-echo and gradient-echo sequences.

Key words

Magnetic resonance imaging Pulse sequences Spin echo Gradient echo 


  1. 1.
    Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99(9):2293–2352CrossRefPubMedGoogle Scholar
  2. 2.
    Aime S, Barge A, Delli Castelli D, Fedeli F, Mortillaro A, Nielsen FU, Terreno E (2002) Paramagnetic lanthanide (III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 47(4):639–648CrossRefPubMedGoogle Scholar
  3. 3.
    Hancu I, Dixon WT, Woods M, Vinogradov E, Sherry AD, Lenkinski RE (2010) CEST and PARACEST MR contrast agents. Acta Radiol 51(8):910–923. CrossRefPubMedGoogle Scholar
  4. 4.
    Sun PZ, Sorensen AG (2008) Imaging pH using the chemical exchange saturation transfer (CEST) MRI: correction of concomitant RF irradiation effects to quantify CEST MRI for chemical exchange rate and pH. Magn Reson Med 60(2):390–397CrossRefPubMedGoogle Scholar
  5. 5.
    McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109(10):4780–4827. CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang S, Malloy CR, Sherry AD (2005) MRI thermometry based on PARACEST agents. J Am Chem Soc 127(50):17572–17573. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148CrossRefGoogle Scholar
  8. 8.
    Bonnemain B (1998) Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. J Drug Target 6(3):167–174. CrossRefPubMedGoogle Scholar
  9. 9.
    Liu F, Laurent S, Fattahi H, Vander Elst L, Muller RN (2011) Superparamagnetic nanosystems based on iron oxide nanoparticles for biomedical imaging. Nanomedicine (Lond) 6(3):519–528. CrossRefGoogle Scholar
  10. 10.
    Hahn EL (1950) Spin echoes. Phys Rev 80(4):580CrossRefGoogle Scholar
  11. 11.
    Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94(3):630CrossRefGoogle Scholar
  12. 12.
    Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29(8):688–691CrossRefGoogle Scholar
  13. 13.
    Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3(6):823–833CrossRefPubMedGoogle Scholar
  14. 14.
    Mansfield P, Maudsley A (1976) Planar and line-scan spin imaging by NMR. In: Proc. XIXth Congress Amperen, Heidelberg, pp 247–52Google Scholar
  15. 15.
    Ernst R, Anderson W (1966) Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 37(1):93–102CrossRefGoogle Scholar
  16. 16.
    Henninger B, Kremser C, Rauch S, Eder R, Judmaier W, Zoller H, Michaely H, Schocke M (2013) Evaluation of liver fat in the presence of iron with MRI using T2* correction: a clinical approach. Eur Radiol 23(6):1643–1649. CrossRefPubMedGoogle Scholar
  17. 17.
    Kolnagou A, Natsiopoulos K, Kleanthous M, Ioannou A, Kontoghiorghes GJ (2013) Liver iron and serum ferritin levels are misleading for estimating cardiac, pancreatic, splenic and total body iron load in thalassemia patients: factors influencing the heterogenic distribution of excess storage iron in organs as identified by MRI T2*. Toxicol Mech Methods 23(1):48–56. CrossRefPubMedGoogle Scholar
  18. 18.
    Barzin M, Kowsarian M, Akhlaghpoor S, Jalalian R, Taremi M (2012) Correlation of cardiac MRI T2* with echocardiography in thalassemia major. Eur Rev Med Pharmacol Sci 16(2):254–260PubMedGoogle Scholar
  19. 19.
    Qin Y, Zhu W, Zhan C, Zhao L, Wang J, Tian Q, Wang W (2011) Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2’ mapping. J Huazhong Univ Sci Technol Med Sci 31(4):578–585. CrossRefPubMedGoogle Scholar
  20. 20.
    Mihai G, He X, Zhang X, McCarthy B, Tran T, Pennell M, Blank J, Simonetti OP, Jackson RD, Raman SV (2011) Design and rationale for the study of changes in iron and atherosclerosis risk in Perimenopause. J Clin Exp Cardiol 2:152. CrossRefGoogle Scholar
  21. 21.
    Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Salman RA-S, Warach S, Launer LJ, Van Buchem MA, Breteler MM, Group MS (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8(2):165–174CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC/UAMMadridSpain

Personalised recommendations