Molecular Magnetic Resonance Imaging (mMRI)

  • Maxime Gauberti
  • Antoine P. Fournier
  • Denis Vivien
  • Sara Martinez de Lizarrondo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)

Abstract

Molecular magnetic resonance imaging (mMRI) enables the detection of a protein of interest in vivo, in a noninvasive manner. The general concept of mMRI is to target a contrast agent to a protein of interest, and to perform a contrast-sensitive MRI sequence. Typically, contrast agents are made of a “contrastophore” (the part of the construct responsible for the contrast on the images) and a targeting moiety (“pharmacophore”). Recently, the development of a new family of contrastophore carrying a high payload of iron oxide (micro-sized particles of iron oxide, MPIO) has led to a dramatic increase in the sensitivity of mMRI. Here, we describe the production of targeted MPIO using commercially available reagents and the MRI protocols to allow their detection in vivo.

Key words

Molecular imaging Inflammation Vascular-cell adhesion molecule Intercellular adhesion molecule Selectins Leucocytes USPIO Microparticles Endothelial cells Endothelium Platelets 

References

  1. 1.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. https://doi.org/10.1021/cr068445e CrossRefPubMedGoogle Scholar
  2. 2.
    Mahmoudi M, Sheibani S, Milani AS, Rezaee F, Gauberti M, Dinarvand R, Vali H (2015) Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine (Lond) 10(2):215–226. https://doi.org/10.2217/nnm.14.69 CrossRefGoogle Scholar
  3. 3.
    Le Behot A, Gauberti M, Martinez De Lizarrondo S, Montagne A, Lemarchand E, Repesse Y, Guillou S, Denis CV, Maubert E, Orset C, Vivien D (2014) GpIbalpha-VWF blockade restores vessel patency by dissolving platelet aggregates formed under very high shear rate in mice. Blood 123(21):3354–3363. https://doi.org/10.1182/blood-2013-12-543074 CrossRefPubMedGoogle Scholar
  4. 4.
    Gauberti M, Montagne A, Quenault A, Vivien D (2014) Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci 8:389. https://doi.org/10.3389/fncel.2014.00389 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vivien D, Gauberti M, Montagne A, Defer G, Touze E (2011) Impact of tissue plasminogen activator on the neurovascular unit: from clinical data to experimental evidence. J Cereb Blood Flow Metab 31(11):2119–2134. https://doi.org/10.1038/jcbfm.2011.127 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Serres S, Soto MS, Hamilton A, McAteer MA, Carbonell WS, Robson MD, Ansorge O, Khrapitchev A, Bristow C, Balathasan L, Weissensteiner T, Anthony DC, Choudhury RP, Muschel RJ, Sibson NR (2012) Molecular MRI enables early and sensitive detection of brain metastases. Proc Natl Acad Sci U S A 109(17):6674–6679. https://doi.org/10.1073/pnas.1117412109 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17–18):812–818. https://doi.org/10.1016/j.drudis.2006.07.005 CrossRefPubMedGoogle Scholar
  8. 8.
    McAteer MA, Sibson NR, von Zur Muhlen C, Schneider JE, Lowe AS, Warrick N, Channon KM, Anthony DC, Choudhury RP (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13(10):1253–1258. https://doi.org/10.1038/nm1631 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53(2):329–338. https://doi.org/10.1002/mrm.20342 CrossRefPubMedGoogle Scholar
  10. 10.
    Montagne A, Gauberti M, Macrez R, Jullienne A, Briens A, Raynaud JS, Louin G, Buisson A, Haelewyn B, Docagne F, Defer G, Vivien D, Maubert E (2012) Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders. NeuroImage 63(2):760–770. https://doi.org/10.1016/j.neuroimage.2012.07.018 CrossRefPubMedGoogle Scholar
  11. 11.
    Deddens LH, van Tilborg GA, van der Toorn A, van der Marel K, Paulis LE, van Bloois L, Storm G, Strijkers GJ, Mulder WJ, de Vries HE, Dijkhuizen RM (2013) MRI of ICAM-1 upregulation after stroke: the importance of choosing the appropriate target-specific particulate contrast agent. Mol Imaging Biol 15(4):411–422. https://doi.org/10.1007/s11307-013-0617-z CrossRefPubMedGoogle Scholar
  12. 12.
    Blezer EL, Deddens LH, Kooij G, Drexhage J, van der Pol SM, Reijerkerk A, Dijkhuizen RM, de Vries HE (2015) In vivo MR imaging of intercellular adhesion molecule-1 expression in an animal model of multiple sclerosis. Contrast Media Mol Imaging 10(2):111–121. https://doi.org/10.1002/cmmi.1602 CrossRefPubMedGoogle Scholar
  13. 13.
    Melemenidis S, Jefferson A, Ruparelia N, Akhtar AM, Xie J, Allen D, Hamilton A, Larkin JR, Perez-Balderas F, Smart SC, Muschel RJ, Chen X, Sibson NR, Choudhury RP (2015) Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-iron oxide microparticle conjugates. Theranostics 5(5):515–529. https://doi.org/10.7150/thno.10319 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Belliere J, Martinez de Lizarrondo S, Choudhury RP, Quenault A, Le Behot A, Delage C, Chauveau D, Schanstra JP, Bascands JL, Vivien D, Gauberti M (2015) Unmasking Silent Endothelial Activation in the Cardiovascular System Using Molecular Magnetic Resonance Imaging. Theranostics 5(11):1187–1202. https://doi.org/10.7150/thno.11835 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jefferson A, Ruparelia N, Choudhury RP (2013) Exogenous microparticles of iron oxide bind to activated endothelial cells but, unlike monocytes, do not trigger an endothelial response. Theranostics 3(6):428–436. https://doi.org/10.7150/thno.5895 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gauberti M, Montagne A, Marcos-Contreras OA, Le Behot A, Maubert E, Vivien D (2013) Ultra-sensitive molecular MRI of vascular cell adhesion molecule-1 reveals a dynamic inflammatory penumbra after strokes. Stroke 44(7):1988–1996. https://doi.org/10.1161/strokeaha.111.000544 CrossRefPubMedGoogle Scholar
  17. 17.
    Marcos-Contreras OA, Martinez de Lizarrondo S, Bardou I, Orset C, Pruvost M, Anfray A, Frigout Y, Hommet Y, Lebouvier L, Montaner J, Vivien D, Gauberti M (2016) Hyperfibrinolysis increases blood-brain barrier permeability by a plasmin- and bradykinin-dependent mechanism. Blood 128(20):2423–2434. https://doi.org/10.1182/blood-2016-03-705384 CrossRefPubMedGoogle Scholar
  18. 18.
    Quenault A, Martinez de Lizarrondo S, Etard O, Gauberti M, Orset C, Haelewyn B, Segal HC, Rothwell PM, Vivien D, Touze E, Ali C (2017) Molecular magnetic resonance imaging discloses endothelial activation after transient ischaemic attack. Brain 140(Pt 1):146–157. https://doi.org/10.1093/brain/aww260 CrossRefPubMedGoogle Scholar
  19. 19.
    Gakuba C, Gauberti M, Mazighi M, Defer G, Hanouz JL, Vivien D (2011) Preclinical evidence toward the use of ketamine for recombinant tissue-type plasminogen activator-mediated thrombolysis under anesthesia or sedation. Stroke 42(10):2947–2949. https://doi.org/10.1161/strokeaha.111.620468 CrossRefPubMedGoogle Scholar
  20. 20.
    Orset C, Haelewyn B, Allan SM, Ansar S, Campos F, Cho TH, Durand A, El Amki M, Fatar M, Garcia-Yebenes I, Gauberti M, Grudzenski S, Lizasoain I, Lo E, Macrez R, Margaill I, Maysami S, Meairs S, Nighoghossian N, Orbe J, Paramo JA, Parienti JJ, Rothwell NJ, Rubio M, Waeber C, Young AR, Touze E, Vivien D (2016) Efficacy of Alteplase in a Mouse Model of Acute Ischemic Stroke: A Retrospective Pooled Analysis. Stroke 47(5):1312–1318. https://doi.org/10.1161/strokeaha.116.012238 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gaberel T, Gakuba C, Hebert M, Montagne A, Agin V, Rubio M, Emery E, Vivien D, Gauberti M (2013) Intracerebral hematomas disappear on T2*-weighted images during normobaric oxygen therapy. Stroke 44(12):3482–3489. https://doi.org/10.1161/strokeaha.113.002045 CrossRefPubMedGoogle Scholar
  22. 22.
    Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz JL, Emery E, Touze E, Vivien D, Gauberti M (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45(10):3092–3096. https://doi.org/10.1161/strokeaha.114.006617 CrossRefPubMedGoogle Scholar
  23. 23.
    Gauberti M, Martinez de Lizarrondo S, Orset C, Vivien D (2014) Lack of secondary microthrombosis after thrombin-induced stroke in mice and non-human primates. J Thromb Haemost 12(3):409–414. https://doi.org/10.1111/jth.12487 CrossRefPubMedGoogle Scholar
  24. 24.
    Briens A, Gauberti M, Parcq J, Montaner J, Vivien D, Martinez de Lizarrondo S (2016) Nano-zymography Using Laser-Scanning Confocal Microscopy Unmasks Proteolytic Activity of Cell-Derived Microparticles. Theranostics 6(5):610–626. https://doi.org/10.7150/thno.13757 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Maxime Gauberti
    • 1
    • 2
  • Antoine P. Fournier
    • 1
  • Denis Vivien
    • 1
    • 3
  • Sara Martinez de Lizarrondo
    • 1
  1. 1.Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, PhIND, Physiopathology and Imaging of Neurological DisordersCyceronCaenFrance
  2. 2.Department of Diagnostic Imaging and Interventional RadiologyCHU CaenCaenFrance
  3. 3.Clinical Research DepartmentCHU CaenCaenFrance

Personalised recommendations