Skip to main content

Cardiac MRI in Small Animals

  • Protocol
  • First Online:
Preclinical MRI

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1718))

Abstract

Cardiac magnetic resonance (MR) imaging of mice is a valuable tool for the precise in vivo diagnosis and prognosis of heart defects. This detailed protocol describes the method of cardiac MR imaging in mice step by step. A series of MR images captures the contractile function of the mouse heart and post-processing of the image data yields morphometric parameters (myocardial mass, myocardial wall thickness, ventricular end-systolic and end-diastolic volume) as well as functional parameters (stroke volume and ejection fraction). This protocol may also serve as a starting point for MR imaging of rats, by using larger image dimensions (field-of-view) and MR hardware suitable for larger animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Camacho P, Fan H, Liu Z, He JQ (2016) Small mammalian animal models of heart disease. Am J Cardiovasc Dis 6(3):70–80

    PubMed  PubMed Central  Google Scholar 

  2. Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, Tarin C, Mas S, Ortiz A, Egido J (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841. https://doi.org/10.1155/2011/497841

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stuckey DJ, McSweeney SJ, Thin MZ, Habib J, Price AN, Fiedler LR, Gsell W, Prasad SK, Schneider MD (2014) T(1) mapping detects pharmacological retardation of diffuse cardiac fibrosis in mouse pressure-overload hypertrophy. Circ Cardiovasc Imaging 7(2):240–249. https://doi.org/10.1161/CIRCIMAGING.113.000993

    Article  PubMed  Google Scholar 

  4. Coelho-Filho OR, Shah RV, Mitchell R, Neilan TG, Moreno H Jr, Simonson B, Kwong R, Rosenzweig A, Das S, Jerosch-Herold M (2013) Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications for early cardiac remodeling. Circulation 128(11):1225–1233. https://doi.org/10.1161/CIRCULATIONAHA.112.000438

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Abeykoon S, Sargent M, Wansapura JP (2012) Quantitative myocardial perfusion in mice based on the signal intensity of flow sensitized CMR. J Cardiovasc Magn Reson 14:73. https://doi.org/10.1186/1532-429X-14-73

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beyers RJ, Smith RS, Xu Y, Piras BA, Salerno M, Berr SS, Meyer CH, Kramer CM, French BA, Epstein FH (2012) T(2) -weighted MRI of post-infarct myocardial edema in mice. Magn Reson Med 67(1):201–209. https://doi.org/10.1002/mrm.22975

    Article  PubMed  Google Scholar 

  7. Musthafa HS, Dragneva G, Lottonen L, Merentie M, Petrov L, Heikura T, Yla-Herttuala E, Yla-Herttuala S, Grohn O, Liimatainen T (2013) Longitudinal rotating frame relaxation time measurements in infarcted mouse myocardium in vivo. Magn Reson Med 69(5):1389–1395. https://doi.org/10.1002/mrm.24382

    Article  PubMed  Google Scholar 

  8. Vandsburger MH, Epstein FH (2011) Emerging MRI methods in translational cardiovascular research. J Cardiovasc Transl Res 4(4):477–492. https://doi.org/10.1007/s12265-011-9275-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wagenhaus B, Pohlmann A, Dieringer MA, Els A, Waiczies H, Waiczies S, Schulz-Menger J, Niendorf T (2012) Functional and morphological cardiac magnetic resonance imaging of mice using a cryogenic quadrature radiofrequency coil. PLoS One 7(8):e42383. https://doi.org/10.1371/journal.pone.0042383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niendorf T, Pohlmann A, Reimann HM, Waiczies H, Peper E, Huelnhagen T, Seeliger E, Schreiber A, Kettritz R, Strobel K, MC K, Waiczies S (2015) Advancing cardiovascular, neurovascular, and renal magnetic resonance imaging in small rodents using cryogenic radiofrequency coil technology. Front Pharmacol 6:255. https://doi.org/10.3389/fphar.2015.00255

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hoerr V, Nagelmann N, Nauerth A, Kuhlmann MT, Stypmann J, Faber C (2013) Cardiac-respiratory self-gated cine ultra-short echo time (UTE) cardiovascular magnetic resonance for assessment of functional cardiac parameters at high magnetic fields. J Cardiovasc Magn Reson 15:59. https://doi.org/10.1186/1532-429X-15-59

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ring J, Hoerr V, Tuchscherr L, Kuhlmann MT, Loffler B, Faber C (2014) MRI visualization of Staphyloccocus aureus-induced infective endocarditis in mice. PLoS One 9(9):e107179. https://doi.org/10.1371/journal.pone.0107179

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Thomas Basse-Lüsebrink from Bruker Biospin MRI GmbH, Ettlingen, Germany, for providing the Ig-UTE image data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Pohlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ku, MC., Huelnhagen, T., Niendorf, T., Pohlmann, A. (2018). Cardiac MRI in Small Animals. In: García Martín, M., López Larrubia, P. (eds) Preclinical MRI. Methods in Molecular Biology, vol 1718. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7531-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7531-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7530-3

  • Online ISBN: 978-1-4939-7531-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics