Advertisement

Susceptibility Weighted MRI in Rodents at 9.4 T

  • Ferdinand Schweser
  • Marilena Preda
  • Robert Zivadinov
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)

Abstract

Susceptibility Weighted Imaging (SWI) is an established part of the clinical neuroimaging toolbox and, since its inception, has also successfully been used in various preclinical studies. Exploiting the effect of variations of magnetic susceptibility between different tissues on the externally applied, static, homogeneous magnetic field, the method visualizes venous vasculature, hemorrhages and blood degradation products, calcifications, and tissue iron deposits. The chapter describes in vivo and ex vivo protocols for preclinical SWI in rodents.

Key words

SWI Preclinical MRI Phase imaging Magnetic susceptibility Rodents Mice Rat Gradient echo Bold 

Notes

Acknowledgements

We are grateful to Drs. David Poulsen (Department of Neurosurgery, University at Buffalo) and Claire Modica (Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo) for support with the ex vivo experiments. Research reported in this publication was funded by the National Center for Advancing Translational Sciences of the National Institutes of Health under award Number UL1TR001412. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

References

  1. 1.
    Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52(3):612–618. https://doi.org/10.1002/mrm.20198 CrossRefPubMedGoogle Scholar
  2. 2.
    Reichenbach JR, Barth M, Haacke EM, Klarhofer M, Kaiser WA, Moser E (2000) High-resolution MR venography at 3.0 Tesla. J Comput Assist Tomogr 24(6):949–957CrossRefPubMedGoogle Scholar
  3. 3.
    Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14(7–8):453–467CrossRefPubMedGoogle Scholar
  4. 4.
    Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204(1):272–277. https://doi.org/10.1148/radiology.204.1.9205259 CrossRefPubMedGoogle Scholar
  5. 5.
    Ahmed BA, Kumar NA, Vijayan D, Magudeeswaran PK, Ganesan P (2016) Magnetic resonance imaging susceptibility- weighted imaging is more reliable to detect hemorrhage and calcification than magnetic resonance imaging T2*-weighted gradient echo in brain imaging. Int J Sci Study 4(3):203–205. 10.17354/ijss/2016/352 Google Scholar
  6. 6.
    Barbosa JH, Santos AC, Salmon CE (2015) Susceptibility weighted imaging: differentiating between calcification and hemosiderin. Radiol Bras 48(2):93–100. https://doi.org/10.1590/0100-3984.2014.0010 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Berberat J, Grobholz R, Boxheimer L, Rogers S, Remonda L, Roelcke U (2014) Differentiation between calcification and hemorrhage in brain tumors using susceptibility-weighted imaging: a pilot study. AJR Am J Roentgenol 202(4):847–850. https://doi.org/10.2214/AJR.13.10745 CrossRefPubMedGoogle Scholar
  8. 8.
    Deistung A, Mentzel HJ, Rauscher A, Witoszynskyj S, Kaiser WA, Reichenbach JR (2006) Demonstration of paramagnetic and diamagnetic cerebral lesions by using susceptibility weighted phase imaging (SWI). Z Med Phys 16(4):261–267CrossRefPubMedGoogle Scholar
  9. 9.
    Li C, Imbesi S, Lee R, Haacke E, Chen J (2016) Potential pitfalls when differentiating hemorrhage and calcium on susceptibility-weighted images. Neurographics 6(3):123–126CrossRefGoogle Scholar
  10. 10.
    Ong BC, Stuckey SL (2010) Susceptibility weighted imaging: a pictorial review. J Med Imaging Radiat Oncol 54(5):435–449. https://doi.org/10.1111/j.1754-9485.2010.02208.x CrossRefPubMedGoogle Scholar
  11. 11.
    Chen X, Zeng C, Luo T, Ouyang Y, Lv F, Rumzan R, Wang Z, Li Q, Wang J, Hou H, Huang F, Li Y (2012) Iron deposition of the deep grey matter in patients with multiple sclerosis and neuromyelitis optica: a control quantitative study by 3D-enhanced susceptibility-weighted angiography (ESWAN). Eur J Radiol 81(4):e633–e639. https://doi.org/10.1016/j.ejrad.2012.01.003 CrossRefPubMedGoogle Scholar
  12. 12.
    Du S, Sah SK, Zeng C, Wang J, Liu Y, Xiong H, Li Y (2015) Iron deposition in the gray matter in patients with relapse-remitting multiple sclerosis: a longitudinal study using three-dimensional (3D)-enhanced T2*-weighted angiography (ESWAN). Eur J Radiol 84(7):1325–1332. https://doi.org/10.1016/j.ejrad.2015.04.013 CrossRefPubMedGoogle Scholar
  13. 13.
    Hagemeier J, Weinstock-Guttman B, Bergsland N, Heininen-Brown M, Carl E, Kennedy C, Magnano C, Hojnacki D, Dwyer MG, Zivadinov R (2012) Iron deposition on SWI-filtered phase in the subcortical deep gray matter of patients with clinically isolated syndrome may precede structure-specific atrophy. AJNR Am J Neuroradiol 33(8):1596–1601. https://doi.org/10.3174/ajnr.A3030 CrossRefPubMedGoogle Scholar
  14. 14.
    Ning N, Zhang L, Gao J, Zhang Y, Ren Z, Niu G, Dai Y, EX W, Guo Y, Yang J (2014) Assessment of iron deposition and white matter maturation in infant brains by using enhanced T2 star weighted angiography (ESWAN): R2* versus phase values. PLoS One 9(2):e89888. https://doi.org/10.1371/journal.pone.0089888 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang D, Li WB, Wei XE, Li YH, Dai YM (2012) An investigation of age-related iron deposition using susceptibility weighted imaging. PLoS One 7(11):e50706. https://doi.org/10.1371/journal.pone.0050706 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang D, Zhu D, Wei XE, Li YH, Li WB (2013) Using susceptibility-weighted images to quantify iron deposition differences in amnestic mild cognitive impairment and Alzheimer’s disease. Neurol India 61(1):26–34. https://doi.org/10.4103/0028-3886.107924 CrossRefPubMedGoogle Scholar
  17. 17.
    Xu X, Wang Q, Zhang M (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. NeuroImage 40(1):35–42. https://doi.org/10.1016/j.neuroimage.2007.11.017 CrossRefPubMedGoogle Scholar
  18. 18.
    Yu J, Qi F, Wang N, Gao P, Dai S, Lu Y, Su Q, Du Y, Che F (2014) Increased iron level in motor cortex of amyotrophic lateral sclerosis patients: an in vivo MR study. Amyotroph Lateral Scler Frontotemporal Degener 15(5–6):357–361. https://doi.org/10.3109/21678421.2014.906618 CrossRefPubMedGoogle Scholar
  19. 19.
    Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78CrossRefPubMedGoogle Scholar
  20. 20.
    Krishnan AS, Lansley JA, Jager HR, Mankad K (2015) New vistas in clinical practice: susceptibility-weighted imaging. Quant Imaging Med Surg 5(3):448–452. https://doi.org/10.3978/j.issn.2223-4292.2015.03.03 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu S, Buch S, Chen Y, Choi HS, Dai Y, Habib C, Hu J, Jung JY, Luo Y, Utriainen D, Wang M, Wu D, Xia S, Haacke EM (2017) Susceptibility-weighted imaging: current status and future directions. NMR Biomed 30(4):e3552. https://doi.org/10.1002/nbm.3552 CrossRefGoogle Scholar
  22. 22.
    Bir C, Vandevord P, Shen Y, Raza W, Haacke EM (2012) Effects of variable blast pressures on blood flow and oxygen saturation in rat brain as evidenced using MRI. Magn Reson Imaging 30(4):527–534. https://doi.org/10.1016/j.mri.2011.12.003 CrossRefPubMedGoogle Scholar
  23. 23.
    Blasiak B, Landry J, Tyson R, Sharp J, Iqbal U, Abulrob A, Rushforth D, Matyas J, Ponjevic D, Sutherland GR, Wolfsberger S, Tomanek B (2014) Molecular susceptibility weighted imaging of the glioma rim in a mouse model. J Neurosci Methods 226:132–138. https://doi.org/10.1016/j.jneumeth.2014.01.034 CrossRefPubMedGoogle Scholar
  24. 24.
    Nathoo N, Agrawal S, Wu Y, Haylock-Jacobs S, Yong VW, Foniok T, Barnes S, Obenaus A, Dunn JF (2013) Susceptibility-weighted imaging in the experimental autoimmune encephalomyelitis model of multiple sclerosis indicates elevated deoxyhemoglobin, iron deposition and demyelination. Mult Scler 19(6):721–731. https://doi.org/10.1177/1352458512460602 CrossRefPubMedGoogle Scholar
  25. 25.
    Nathoo N, Rogers JA, Yong VW, Dunn JF (2015) Detecting deoxyhemoglobin in spinal cord vasculature of the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis using susceptibility MRI and hyperoxygenation. PLoS One 10(5):e0127033. https://doi.org/10.1371/journal.pone.0127033 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shen Y, Kou Z, Kreipke CW, Petrov T, Hu J, Haacke EM (2007) In vivo measurement of tissue damage, oxygen saturation changes and blood flow changes after experimental traumatic brain injury in rats using susceptibility weighted imaging. Magn Reson Imaging 25(2):219–227. https://doi.org/10.1016/j.mri.2006.09.018 CrossRefPubMedGoogle Scholar
  27. 27.
    Verma SK, Kan EM, Lu J, Ng KC, Ling EA, Seramani S, Kn BP, Wong YC, Tan MH, Velan SS (2015) Multi-echo susceptibility-weighted imaging and histology of open-field blast-induced traumatic brain injury in a rat model. NMR Biomed 28(9):1069–1077. https://doi.org/10.1002/nbm.3351 CrossRefPubMedGoogle Scholar
  28. 28.
    Yang SH, Lin J, Lu F, Dai YY, Han ZH, CX F, FL H, HC G (2016) Contrast-enhanced susceptibility weighted imaging with ultrasmall superparamagnetic iron oxide improves the detection of tumor vascularity in a hepatocellular carcinoma nude mouse model. J Magn Reson Imaging 44(2):288–295. https://doi.org/10.1002/jmri.25167 CrossRefPubMedGoogle Scholar
  29. 29.
    Kim SG, Park SH (2011) High-resolution venographic BOLD MRI of animal brain at 9.4 T: implications for BOLD fMRI. Susceptibility weighted imaging in MRI: basic concepts and clinical applications. Wiley-Blackwell, Hoboken, pp 637–647Google Scholar
  30. 30.
    Ogawa S, Lee TM (1990) Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med 16(1):9–18CrossRefPubMedGoogle Scholar
  31. 31.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Park SH, Masamoto K, Hendrich K, Kanno I, Kim SG (2008) Imaging brain vasculature with BOLD microscopy: MR detection limits determined by in vivo two-photon microscopy. Magn Reson Med 59(4):855–865. https://doi.org/10.1002/mrm.21573 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275(3):161–203CrossRefPubMedGoogle Scholar
  34. 34.
    Buch S, Liu S, Ye Y, Cheng YC, Neelavalli J, Haacke EM (2015) Susceptibility mapping of air, bone, and calcium in the head. Magn Reson Med 73(6):2185–2194. https://doi.org/10.1002/mrm.25350 CrossRefPubMedGoogle Scholar
  35. 35.
    Chen W, Zhu W, Kovanlikaya I, Kovanlikaya A, Liu T, Wang S, Salustri C, Wang Y (2014) Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping. Radiology 270(2):496–505. https://doi.org/10.1148/radiol.13122640 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Deistung A, Schweser F, Wiestler B, Abello M, Roethke M, Sahm F, Wick W, Nagel AM, Heiland S, Schlemmer HP, Bendszus M, Reichenbach JR, Radbruch A (2013) Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One 8(3):e57924. https://doi.org/10.1371/journal.pone.0057924 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schweser F, Deistung A, Lehr BW, Reichenbach JR (2010) Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys 37(10):5165–5178. https://doi.org/10.1118/1.3481505 CrossRefPubMedGoogle Scholar
  38. 38.
    Straub S, Laun FB, Emmerich J, Jobke B, Hauswald H, Katayama S, Herfarth K, Schlemmer HP, Ladd ME, Ziener CH, Bonekamp D, Rothke MC (2017) Potential of quantitative susceptibility mapping for detection of prostatic calcifications. J Magn Reson Imaging 45(3):889–898. https://doi.org/10.1002/jmri.25385 CrossRefPubMedGoogle Scholar
  39. 39.
    Rauscher A, Sedlacik J, Deistung A, Mentzel HJ, Reichenbach JR (2006) Susceptibility weighted imaging: data acquisition, image reconstruction and clinical applications. Z Med Phys 16(4):240–250CrossRefPubMedGoogle Scholar
  40. 40.
    Deistung A, Rauscher A, Sedlacik J, Stadler J, Witoszynskyj S, Reichenbach JR (2008) Susceptibility weighted imaging at ultra high magnetic field strengths: theoretical considerations and experimental results. Magn Reson Med 60(5):1155–1168. https://doi.org/10.1002/mrm.21754 CrossRefPubMedGoogle Scholar
  41. 41.
    Duyn JH, van Gelderen P, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 104(28):11796–11801. https://doi.org/10.1073/pnas.0610821104 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hagemeier J, Dwyer MG, Bergsland N, Schweser F, Magnano CR, Heininen-Brown M, Ramasamy DP, Carl E, Kennedy C, Melia R, Polak P, Deistung A, Geurts JJ, Reichenbach JR, Zivadinov R (2013) Effect of age on MRI phase behavior in the subcortical deep gray matter of healthy individuals. AJNR Am J Neuroradiol 34(11):2144–2151. https://doi.org/10.3174/ajnr.A3569 CrossRefPubMedGoogle Scholar
  43. 43.
    Rumzan R, Wang JJ, Zeng C, Chen X, Li Y, Luo T, Lv F, Wang ZP, Hou H, Huang F (2013) Iron deposition in the precentral grey matter in patients with multiple sclerosis: a quantitative study using susceptibility-weighted imaging. Eur J Radiol 82(2):e95–e99. https://doi.org/10.1016/j.ejrad.2012.09.006 CrossRefPubMedGoogle Scholar
  44. 44.
    Wang D, Li YY, Luo JH, Li YH (2014) Age-related iron deposition in the basal ganglia of controls and Alzheimer disease patients quantified using susceptibility weighted imaging. Arch Gerontol Geriatr 59(2):439–449. https://doi.org/10.1016/j.archger.2014.04.002 CrossRefPubMedGoogle Scholar
  45. 45.
    Hagemeier J, Weinstock-Guttman B, Heininen-Brown M, Poloni GU, Bergsland N, Schirda C, Magnano CR, Kennedy C, Carl E, Dwyer MG, Minagar A, Zivadinov R (2013) Gray matter SWI-filtered phase and atrophy are linked to disability in MS. Front Biosci (Elite Ed) 5:525–532CrossRefGoogle Scholar
  46. 46.
    Peters AM, Brookes MJ, Hoogenraad FG, Gowland PA, Francis ST, Morris PG, Bowtell R (2007) T2* measurements in human brain at 1.5, 3 and 7 T. Magn Reson Imaging 25(6):748–753. https://doi.org/10.1016/j.mri.2007.02.014 CrossRefPubMedGoogle Scholar
  47. 47.
    Bourekas EC, Christoforidis GA, Abduljalil AM, Kangarlu A, Chakeres DW, Spigos DG, Robitaille PM (1999) High resolution MRI of the deep gray nuclei at 8 Tesla. J Comput Assist Tomogr 23(6):867–874CrossRefPubMedGoogle Scholar
  48. 48.
    Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16(2):192–225CrossRefPubMedGoogle Scholar
  49. 49.
    Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320. https://doi.org/10.1109/TMI.2010.2046908 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Frank LR, Crawley AP, Buxton RB (1992) Elimination of oblique flow artifacts in magnetic resonance imaging. Magn Reson Med 25(2):299–307CrossRefPubMedGoogle Scholar
  51. 51.
    Denk C, Rauscher A (2010) Susceptibility weighted imaging with multiple echoes. J Magn Reson Imaging 31(1):185–191. https://doi.org/10.1002/jmri.21995 CrossRefPubMedGoogle Scholar
  52. 52.
    Wu B, Li W, Avram AV, Gho SM, Liu C (2012) Fast and tissue-optimized mapping of magnetic susceptibility and T2* with multi-echo and multi-shot spirals. NeuroImage 59(1):297–305. https://doi.org/10.1016/j.neuroimage.2011.07.019 CrossRefPubMedGoogle Scholar
  53. 53.
    Duyn J (2013) MR susceptibility imaging. J Magn Reson 229:198–207. https://doi.org/10.1016/j.jmr.2012.11.013 CrossRefPubMedGoogle Scholar
  54. 54.
    Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y (2015) Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 33(1):1–25. https://doi.org/10.1016/j.mri.2014.09.004 CrossRefPubMedGoogle Scholar
  55. 55.
    Liu C, Li W, Tong KA, Yeom KW, Kuzminski S (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42(1):23–41. https://doi.org/10.1002/jmri.24768 CrossRefPubMedGoogle Scholar
  56. 56.
    Liu C, Wei H, Gong NJ, Cronin M, Dibb R, Decker K (2015) Quantitative susceptibility mapping: contrast mechanisms and clinical applications. Tomography 1(1):3–17. 10.18383/j.tom.2015.00136 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Reichenbach JR, Schweser F, Serres B, Deistung A (2015) Quantitative susceptibility mapping: concepts and applications. Clin Neuroradiol 25(Suppl 2):225–230. https://doi.org/10.1007/s00062-015-0432-9 CrossRefPubMedGoogle Scholar
  58. 58.
    Wang Y, Liu T (2015) Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med 73(1):82–101. https://doi.org/10.1002/mrm.25358 CrossRefPubMedGoogle Scholar
  59. 59.
    Xu B, Liu T, Spincemaille P, Prince M, Wang Y (2014) Flow compensated quantitative susceptibility mapping for venous oxygenation imaging. Magn Reson Med 72(2):438–445. https://doi.org/10.1002/mrm.24937 CrossRefPubMedGoogle Scholar
  60. 60.
    Shen Y, Kou Z, Haacke EM (2011) Susceptibility weighted imaging in rodents. Susceptibility weighted imaging in MRI: basic concepts and clinical applications. Wiley-Blackwell, Hoboken, pp 649–667CrossRefGoogle Scholar
  61. 61.
    Kim S, Pickup S, Hsu O, Poptani H (2009) Enhanced delineation of white matter structures of the fixed mouse brain using Gd-DTPA in microscopic MRI. NMR Biomed 22(3):303–309. https://doi.org/10.1002/nbm.1324 CrossRefPubMedGoogle Scholar
  62. 62.
    Aggarwal M, Mori S, Shimogori T, Blackshaw S, Zhang J (2010) Three-dimensional diffusion tensor microimaging for anatomical characterization of the mouse brain. Magn Reson Med 64(1):249–261. https://doi.org/10.1002/mrm.22426 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Andrews TJ, Osborne MT, Does MD (2006) Diffusion of myelin water. Magn Reson Med 56(2):381–385. https://doi.org/10.1002/mrm.20945 CrossRefPubMedGoogle Scholar
  64. 64.
    Shmueli K, van Gelderen P, Li T, Duyn J (2008) High resolution human brain susceptibility maps calculated from 7 Tesla MRI phase data. 16th Annual Meeting of the International Society for Magnetic Resonance in Medicine, p 642Google Scholar
  65. 65.
    van Duijn S, Nabuurs RJ, van Rooden S, Maat-Schieman ML, van Duinen SG, van Buchem MA, van der Weerd L, Natte R (2011) MRI artifacts in human brain tissue after prolonged formalin storage. Magn Reson Med 65(6):1750–1758. https://doi.org/10.1002/mrm.22758 CrossRefPubMedGoogle Scholar
  66. 66.
    Hakkarainen H, Sierra A, Mangia S, Garwood M, Michaeli S, Grohn O, Liimatainen T (2016) MRI relaxation in the presence of fictitious fields correlates with myelin content in normal rat brain. Magn Reson Med 75(1):161–168. https://doi.org/10.1002/mrm.25590 CrossRefPubMedGoogle Scholar
  67. 67.
    Meijer FJ, Goraj B, Bloem BR, Esselink RA (2017) How I do it: clinical application of brain MRI in the diagnostic work-up of Parkinsonism. J Parkinsons Dis 7:211. https://doi.org/10.3233/JPD-150733 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Birkl C, Langkammer C, Krenn H, Goessler W, Ernst C, Haybaeck J, Stollberger R, Fazekas F, Ropele S (2015) Iron mapping using the temperature dependency of the magnetic susceptibility. Magn Reson Med 73(3):1282–1288. https://doi.org/10.1002/mrm.25236 CrossRefPubMedGoogle Scholar
  69. 69.
    Dal-Bianco A, Grabner G, Kronnerwetter C, Weber M, Hoftberger R, Berger T, Auff E, Leutmezer F, Trattnig S, Lassmann H, Bagnato F, Hametner S (2017) Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol 133(1):25–42. https://doi.org/10.1007/s00401-016-1636-z CrossRefPubMedGoogle Scholar
  70. 70.
    Schweser F, Deistung A, Reichenbach JR (2016) Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM). Z Med Phys 26(1):6–34. https://doi.org/10.1016/j.zemedi.2015.10.002 CrossRefPubMedGoogle Scholar
  71. 71.
    Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34(6):910–914CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Robinson SD, Bredies K, Khabipova D, Dymerska B, Marques JP, Schweser F (2017) An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping. NMR Biomed 30(4):e3601. https://doi.org/10.1002/nbm.3601 CrossRefGoogle Scholar
  73. 73.
    Schweser F, Robinson SD, de Rochefort L, Li W, Bredies K (2017) An illustrated comparison of processing methods for phase MRI and QSM: removal of background field contributions from sources outside the region of interest. NMR Biomed 30(4):e3604. https://doi.org/10.1002/nbm.3604 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Ferdinand Schweser
    • 1
    • 2
  • Marilena Preda
    • 1
    • 2
  • Robert Zivadinov
    • 1
    • 2
  1. 1.Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at BuffaloThe State University of New YorkBuffaloUSA
  2. 2.Center for Biomedical Imaging, Clinical and Translational Science Institute, University at BuffaloThe State University of New YorkBuffaloUSA

Personalised recommendations