Advertisement

In Vivo Heteronuclear Magnetic Resonance Spectroscopy

  • Blanca Lizarbe
  • Antoine Cherix
  • Rolf Gruetter
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1718)

Abstract

Magnetic Resonance Spectroscopy is a technique that has the capability of measuring metabolites in vivo and, in appropriate conditions, to infer its metabolic rates. The success of MRS depends a lot on its sensitivity, which limits the usage of X-nuclei MRS. However, technological developments and refinements in methods have made in vivo heteronuclear MRS possible in humans and in small animals. This chapter provides detailed descriptions of the main procedures needed to perform successful in vivo heteronuclear MRS experiments, with a particular focus on experimental setup in 13C MRS experiments in rodents.

Key words

Magnetic Resonance Spectroscopy X-nuclei Surface coil Infusion Tracer 13C labeled glucose Mouse 

References

  1. 1.
    Rothman DL, De Feyter HM, de Graaf RA, Mason GF, Behar KL (2011) 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed 24(8):943–957. https://doi.org/10.1002/nbm.1772 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhu XH, Du F, Zhang N, Zhang Y, Lei H, Zhang X, Qiao H, Ugurbil K, Chen W (2009) Advanced in vivo heteronuclear MRS approaches for studying brain bioenergetics driven by mitochondria. Methods Mol Biol 489:317–357. https://doi.org/10.1007/978-1-59745-543-5_15 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    de Graaf RA (2007) Basic principles. In: In vivo NMR spectroscopy. Wiley, pp 1–42. doi:https://doi.org/10.1002/9780470512968.ch1
  4. 4.
    de Graaf RA, Rothman DL, Behar KL (2011) State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide. NMR Biomed 24(8):958–972. https://doi.org/10.1002/nbm.1761 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Doddrell DM, Pegg DT, Bendall MR (1982) Distortionless enhancement of NMR signals by polarization transfer. J Magn Reson 48(2):323–327. https://doi.org/10.1016/0022-2364(82)90286-4 Google Scholar
  6. 6.
    Lagemaat MW, van de Bank BL, Sati P, Li SZ, Maas MC, Scheenen TWJ (2016) Repeatability of P-31 MRSI in the human brain at 7T with and without the nuclear Overhauser effect. NMR Biomed 29(3):256–263. https://doi.org/10.1002/nbm.3455 CrossRefPubMedGoogle Scholar
  7. 7.
    Henry PG, Tkac I, Gruetter R (2003) 1H-localized broadband 13C NMR spectroscopy of the rat brain in vivo at 9.4 T. Magn Reson Med 50(4):684–692. https://doi.org/10.1002/mrm.10601 CrossRefPubMedGoogle Scholar
  8. 8.
    Schroeder MA, Atherton HJ, Ball DR, Cole MA, Heather LC, Griffin JL, Clarke K, Radda GK, Tyler DJ (2009) Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. FASEB J 23(8):2529–2538. https://doi.org/10.1096/fj.09-129171 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 100(18):10158–10163. https://doi.org/10.1073/pnas.1733835100 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xin LJ, Lanz B, Lei HX, Gruetter R (2015) Assessment of metabolic fluxes in the mouse brain in vivo using H-1-[C-13] NMR spectroscopy at 14.1 Tesla. J Cerebr Blood F Met 35(5):759–765. https://doi.org/10.1038/jcbfm.2014.251 CrossRefGoogle Scholar
  11. 11.
    Lizarbe B, Cherix A, Xin L, Lei H, Gruetter R (2016) In vivo detection of hypothalamic glucose metabolism in HFD and regular fed mice. Proceedings of the 24th Annual Meeting ISMRM, Singapore, p.110.Google Scholar
  12. 12.
    Vuister GW, Ruizcabello J, Vanzijl PCM (1992) Gradient-enhanced multiple-quantum filter (ge-MQF)—a simple way to obtain single-scan phase-sensitive HMQC spectra. J Magn Reson 100(1):215–220. https://doi.org/10.1016/0022-2364(92)90381-G Google Scholar
  13. 13.
    Pfeuffer J, Tkac I, Choi IY, Merkle H, Ugurbil K, Garwood M, Gruetter R (1999) Localized in vivo 1H NMR detection of neurotransmitter labeling in rat brain during infusion of [1-13C] D-glucose. Magn Reson Med 41(6):1077–1083CrossRefPubMedGoogle Scholar
  14. 14.
    Xin LJ, Mlynarik V, Lanz B, Frenke H, Gruetter R (2010) (1)H-[(13)C] NMR spectroscopy of the rat brain during infusion of [2-(13)C] acetate at 14.1 T. Magn Reson Med 64(2):334–340. https://doi.org/10.1002/mrm.22359 PubMedGoogle Scholar
  15. 15.
    Duarte JM, Lei H, Mlynarik V, Gruetter R (2012) The neurochemical profile quantified by in vivo 1H NMR spectroscopy. NeuroImage 61(2):342–362. https://doi.org/10.1016/j.neuroimage.2011.12.038 CrossRefPubMedGoogle Scholar
  16. 16.
    Duarte JM, Gruetter R (2013) Glutamatergic and GABAergic energy metabolism measured in the rat brain by (13) C NMR spectroscopy at 14.1 T. J Neurochem 126(5):579–590. https://doi.org/10.1111/jnc.12333 CrossRefPubMedGoogle Scholar
  17. 17.
    Cudalbu C, Lanz B, Duarte JM, Morgenthaler FD, Pilloud Y, Mlynarik V, Gruetter R (2012) Cerebral glutamine metabolism under hyperammonemia determined in vivo by localized (1)H and (15)N NMR spectroscopy. J Cerebr Blood F Met 32(4):696–708. https://doi.org/10.1038/jcbfm.2011.173 CrossRefGoogle Scholar
  18. 18.
    Gruetter R, Adriany G, Choi IY, Henry PG, Lei H, Oz G (2003) Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed 16(6-7):313–338. https://doi.org/10.1002/nbm.841 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Adriany G, Gruetter R (1997) A half-volume coil for efficient proton decoupling in humans at 4 tesla. J Magn Reson 125(1):178–184. https://doi.org/10.1006/jmre.1997.1113 CrossRefPubMedGoogle Scholar
  20. 20.
    Lizarbe B, Cherix A, Lei H, Gruetter R (2015) In vivo 13C spectroscopy of the mouse hypothalamus. In: ESMRMB, EdinburghGoogle Scholar
  21. 21.
    Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18(14):5225–5233PubMedGoogle Scholar
  22. 22.
    Duarte JM, Girault FM, Gruetter R (2015) Brain energy metabolism measured by (13)C magnetic resonance spectroscopy in vivo upon infusion of [3-(13)C]lactate. J Neurosci Res 93(7):1009–1018. https://doi.org/10.1002/jnr.23531 CrossRefPubMedGoogle Scholar
  23. 23.
    Henry PG, Adriany G, Deelchand D, Gruetter R, Marjanska M, Oz G, Seaquist ER, Shestov A, Ugurbil K (2006) In vivo 13C NMR spectroscopy and metabolic modeling in the brain: a practical perspective. Magn Reson Imaging 24(4):527–539. https://doi.org/10.1016/j.mri.2006.01.003 CrossRefPubMedGoogle Scholar
  24. 24.
    Sibson NR, Mason GF, Shen J, Cline GW, Herskovits AZ, Wall JE, Behar KL, Rothman DL, Shulman RG (2001) In vivo (13)C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during. J Neurochem 76(4):975–989CrossRefPubMedGoogle Scholar
  25. 25.
    Gargiulo S, Greco A, Gramanzini M, Esposito S, Affuso A, Brunetti A, Vesce G (2012) Mice anesthesia, analgesia, and care, Part I: anesthetic considerations in preclinical research. ILAR J 53(1):E55–E69. https://doi.org/10.1093/ilar.53.1.55 CrossRefPubMedGoogle Scholar
  26. 26.
    Tkac I, Henry PG, Andersen P, Keene CD, Low WC, Gruetter R (2004) Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T. Magn Reson Med 52(3):478–484. https://doi.org/10.1002/mrm.20184 CrossRefPubMedGoogle Scholar
  27. 27.
    Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348CrossRefPubMedGoogle Scholar
  28. 28.
    Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9(1):79–93CrossRefPubMedGoogle Scholar
  29. 29.
    Tkac I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41(4):649–656CrossRefPubMedGoogle Scholar
  30. 30.
    Ordidge RJ, Connelly A, Lohman JAB (1986) Image-selected invivo spectroscopy (Isis)—a new technique for spatially selective NMR-spectroscopy. J Magn Reson 66(2):283–294. https://doi.org/10.1016/0022-2364(86)90031-4 Google Scholar
  31. 31.
    Mlynarik V, Gambarota G, Frenkel H, Gruetter R (2006) Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition. Magn Reson Med 56(5):965–970. https://doi.org/10.1002/mrm.21043 CrossRefPubMedGoogle Scholar
  32. 32.
    Haase A, Frahm J, Hanicke W, Matthaei D (1985) 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30(4):341–344CrossRefPubMedGoogle Scholar
  33. 33.
    Tkac I, Gruetter R (2005) Methodology of H NMR spectroscopy of the human brain at very high magnetic fields. Appl Magn Reson 29(1):139–157. https://doi.org/10.1007/BF03166960 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gruetter R (2002) In vivo 13C NMR studies of compartmentalized cerebral carbohydrate metabolism. Neurochem Int 41(2-3):143–154CrossRefPubMedGoogle Scholar
  35. 35.
    Chapman ME, Hu L, Plato CF, Kohan DE (2010) Bioimpedance spectroscopy for the estimation of body fluid volumes in mice. Am J Physiol Ren Physiol 299(1):F280–F283. https://doi.org/10.1152/ajprenal.00113.2010 CrossRefGoogle Scholar
  36. 36.
    Jucker BM, Schaeffer TR, Haimbach RE, McIntosh TS, Chun D, Mayer M, Ohlstein DH, Davis HM, Smith SA, Cobitz AR, Sarkar SK (2002) Normalization of skeletal muscle glycogen synthesis and glycolysis in rosiglitazone-treated Zucker fatty rats: an in vivo nuclear magnetic resonance study. Diabetes 51(7):2066–2073CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Blanca Lizarbe
    • 1
  • Antoine Cherix
    • 1
  • Rolf Gruetter
    • 1
    • 2
    • 3
  1. 1.Laboratory for Functional and Metabolic Imaging (LIFMET)École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Department of RadiologyUniversity of GenevaGenevaSwitzerland
  3. 3.Department of RadiologyUniversity of LausanneLausanneSwitzerland

Personalised recommendations