Skip to main content

Recording and Analysis of Goldmann Kinetic Visual Fields

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1715))

Abstract

Goldmann kinetic perimetry is a commonly used method of evaluating the peripheral visual field. Ongoing gene therapy trials have targeted the central retina, but have nonetheless often included Goldmann kinetic perimetry as part of extensive preinterventional and postinterventional assessment. Future gene therapy trials may target the entire retina through intravitreal injections, as have drug therapeutic trials, further necessitating the evaluation of function across the entire retina. In the following pages, we will briefly review the necessary steps to perform and quantify the visual field, using the conventional Goldmann perimeter and the Field Digitizer software (version 4.20; Johns Hopkins Technology Ventures, Baltimore, USA), respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Berson EL, Sandberg MA, Rosner B et al (1985) Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol 99:240–251

    Article  CAS  PubMed  Google Scholar 

  2. Grover S, Fishman GA, Anderson RJ et al (1997) Rate of visual field loss in retinitis pigmentosa. Ophthalmology 104:460–465

    Article  CAS  PubMed  Google Scholar 

  3. Bainbridge J, Mehat MS, Sundaram V et al (2015) Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med 372:1887–1897

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bennett J, Wellman J, Marshall KA et al (2016) Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet 388:661–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Talib M, van Schooneveld MJ, van Genderen MM et al (2017) Genotypic and phenotypic characteristics of CRB1-associated retinal dystrophies: a long-term follow-up study. Ophthalmology. https://doi.org/10.1016/j.ophtha.2017.01.047

  6. Pierrache LH, Hartel BP, van Wijk E et al (2016) Visual prognosis in USH2A-associated retinitis pigmentosa is worse for patients with usher syndrome type IIa than for those with nonsyndromic retinitis pigmentosa. Ophthalmology 123:1151–1160

    Article  PubMed  Google Scholar 

  7. Rowe F (2016) Visual fields via the visual pathway, 2nd edn. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  8. MacLaren RE, Groppe M, Barnard AR et al (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383:1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pellissier LP, Quinn PM, Alves CH et al (2015) Gene therapy into photoreceptors and Muller glial cells restores retinal structure and function in CRB1 retinitis pigmentosa mouse models. Hum Mol Genet 24:3104–3118

    Article  CAS  PubMed  Google Scholar 

  11. Wassmer SJ, Carvalho LS, György B et al (2017) Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection. Sci Rep 7:45329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koenekoop RK, Sui R, Sallum J et al (2014) Oral 9-cis retinoid for childhood blindness due to Leber congenital amaurosis caused by RPE65 or LRAT mutations: an open-label phase 1b trial. Lancet 384:1513–1520

    Article  CAS  PubMed  Google Scholar 

  13. Dagnelie G (1990) Conversion of planimetric visual field data into solid angles and retinal areas. Clin Vis Sci 5:95–100

    Google Scholar 

  14. Zahid S, Peeler C, Khan N et al (2014) Digital quantification of Goldmann visual fields (GVFs) as a means for genotype-phenotype comparisons and detection of progression in retinal degenerations. Adv Exp Med Biol 801:131–137

    Article  PubMed  PubMed Central  Google Scholar 

  15. Odaka T, Fujisawa K, Akazawa K et al (1992) A visual field quantification system for the Goldmann Perimeter. J Med Syst 16:161–169

    Article  CAS  PubMed  Google Scholar 

  16. Trost DC, Woolson RF, Hayreh SS (1979) Quantification of visual fields for statistical analysis. Arch Ophthalmol 97:2175–2180

    Article  CAS  PubMed  Google Scholar 

  17. Linstone FA, Heckenlively JR, Solish AM (1982) The use of planimetry in the quantitative analysis of visual fields. Glaucoma 4:17–19

    Google Scholar 

  18. Barry MP, Bittner AK, Yang L et al (2016) Variability and errors of manually digitized Goldmann visual fields. Optom Vis Sci 93:720–730

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bittner AK, Iftikhar MH, Dagnelie G (2011) Test-retest, within-visit variability of Goldmann visual fields in retinitis pigmentosa. Invest Ophthalmol Vis Sci 52:8042–8046

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barton JS, Benatar M (2003) Field of vision: a manual and atlas of perimetry, 1st edn. Humana Press, Totowa, NJ. 335p

    Book  Google Scholar 

  21. Koller G, Haas A, Zulauf M et al (2001) Influence of refractive correction on peripheral visual field in static perimetry. Graefes Arch Clin Exp Ophthalmol 239:759–762

    Article  CAS  PubMed  Google Scholar 

  22. Johnson CA, Keltner JL (1987) Optimal rates of movement for kinetic perimetry. Arch Ophthalmol 105:73–75

    Article  CAS  PubMed  Google Scholar 

  23. Rowe FJ, Rowlands A (2014) Comparison of diagnostic accuracy between Octopus 900 and Goldmann kinetic visual fields. Biomed Res Int 2014:214829

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ramirez AM, Chaya CJ, Gordon LK et al (2008) A comparison of semiautomated versus manual Goldmann kinetic perimetry in patients with visually significant glaucoma. J Glaucoma 17:111–117

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camiel J. F. Boon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Talib, M., Dagnelie, G., Boon, C.J.F. (2018). Recording and Analysis of Goldmann Kinetic Visual Fields. In: Boon, C., Wijnholds, J. (eds) Retinal Gene Therapy. Methods in Molecular Biology, vol 1715. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7522-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7522-8_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7521-1

  • Online ISBN: 978-1-4939-7522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics