Skip to main content

Recording and Analysis of the Human Clinical Electroretinogram

  • Protocol
  • First Online:
Retinal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1715))

Abstract

The electroretinogram (ERG) represents the biopotential that is produced by the retina in response to a light stimulus. To date, it remains the best diagnostic tool to objectively evaluate the functional integrity of the normal or diseased retina. In the following pages we briefly review the necessary requirements in order to record and analyze the conventional clinical ERG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sieving PA, Murayama K, Naarendorp F (1994) Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11:519–532

    Article  CAS  PubMed  Google Scholar 

  2. Miller RF, Dowling JE (1970) Intracellular responses of the Muller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J Neurophysiol 33:323–341

    CAS  PubMed  Google Scholar 

  3. Hood DC, Birch DG (1990) A quantitative measure of the electrical-activity of human rod photoreceptors using electroretinography. Vis Neurosci 5:379–387

    Article  CAS  PubMed  Google Scholar 

  4. Heckenlively JR, Arden GB (2006) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, MA

    Google Scholar 

  5. Yonemura D, Tsuzuki K, Aoki T (1962) Clinical importance of the oscillatory potential in the human ERG. Acta Ophthalmol Suppl 70:115–123

    PubMed  Google Scholar 

  6. Lachapelle P (1994) The human suprathreshold photopic oscillatory potentials: method of analysis and clinical application. Doc Ophthalmol 88:1–25

    Article  CAS  PubMed  Google Scholar 

  7. Gauvin M, Chakor H, Koenekoop RK et al (2016) Witnessing the first sign of retinitis pigmentosa onset in the allegedly normal eye of a case of unilateral RP: a 30-year follow-up. Doc Ophthalmol 132:213–229

    Article  PubMed  Google Scholar 

  8. Fornaro P, Calabria G, Corallo G (2002) Pathogenesis of degenerative retinopathies induced by thioridazine and other antipsychotics: a dopamine hypothesis. Doc Ophthalmol 105:41–49

    Article  PubMed  Google Scholar 

  9. Nakamura M, Skalet J, Miyake Y (2003) RDH5 gene mutations and electroretinogram in fundus albipunctatus with or without macular dystrophy – RDH5 mutations and ERG in fundus albipunctatus. Doc Ophthalmol 107:3–11

    Article  PubMed  Google Scholar 

  10. McCulloch DL, Marmor MF, Brigell MG et al (2015) ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130:1–12

    Article  PubMed  Google Scholar 

  11. Miyake Y (2006) Electrodiagnosis of retinal disease. Springer-Verlag, Tokyo

    Google Scholar 

  12. Lachapelle P, Benoit J, Little JM et al (1993) Recording the oscillatory potentials of the electroretinogram with the DTL electrode. Doc Ophthalmol 83:119–130

    Article  CAS  PubMed  Google Scholar 

  13. Coupland SG, Janaky M (1989) ERG electrode in pediatric patients: comparison of DTL fiber, PVA-gel, and non-corneal skin electrodes. Doc Ophthalmol 71:427–433

    Article  CAS  PubMed  Google Scholar 

  14. Brigell M, Bach M, Barber C et al (2003) Guidelines for calibration of stimulus and recording parameters used in clinical electrophysiology of vision. Doc Ophthalmol 107:185–193

    Article  PubMed  Google Scholar 

  15. Hebert M, Vaegan, Lachapelle P (1999) Reproducibility of ERG responses obtained with the DTL electrode. Vis Res 39:1069–1070

    Article  CAS  PubMed  Google Scholar 

  16. Brule J, Lavoie MP, Casanova C et al (2007) Evidence of a possible impact of the menstrual cycle on the reproducibility of scotopic ERGs in women. Doc Ophthalmol 114:125–134

    Article  PubMed  Google Scholar 

  17. Rufiange M, Rousseau S, Dembinska O (2002) Cone-dominated ERG luminance-response function: the Photopic Hill revisited. Doc Ophthalmol 104:231–248

    Article  PubMed  Google Scholar 

  18. Levin LA, Di Polo A (1966) Ocular neuroprotection. Marcel Dekker, New York

    Google Scholar 

  19. Naka KI, Rushton WA (1966) S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol 185:536–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wali N, Leguire LE (1992) The photopic hill: a new phenomenon of the light adapted electroretinogram. Doc Ophthalmol 80:335–345

    Article  CAS  PubMed  Google Scholar 

  21. Garon ML, Dorfman AL, Racine J et al (2014) Estimating ON and OFF contributions to the photopic hill: normative data and clinical applications. Doc Ophthalmol 129:9–16

    Article  PubMed  Google Scholar 

  22. Gauvin M, Lina JM, Lachapelle P (2014) Advance in ERG analysis: from peak time and amplitude to frequency, power, and energy. Biomed Res Int 2014:246096

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gauvin G, Little JM, Lina JM et al (2015) Functional decomposition of the human ERG based on the discrete wavelet transform. J Vis 15:14

    Article  PubMed  Google Scholar 

  24. Gauvin M, Dorfman AL, Trang N et al (2016) Assessing the contribution of the oscillatory potentials to the genesis of the photopic ERG with the discrete wavelet transform. Biomed Res Int 2016:2790194

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gauvin M, Sustar M, Little JM et al (2017) Quantifying the ON and OFF contributions to the flash ERG with the discrete wavelet transform. Transl Vis Sci Technol 6:3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lachapelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gauvin, M., Dorfman, A.L., Lachapelle, P. (2018). Recording and Analysis of the Human Clinical Electroretinogram. In: Boon, C., Wijnholds, J. (eds) Retinal Gene Therapy. Methods in Molecular Biology, vol 1715. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7522-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7522-8_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7521-1

  • Online ISBN: 978-1-4939-7522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics