Skip to main content

Screening for Neutralizing Antibodies Against Natural and Engineered AAV Capsids in Nonhuman Primate Retinas

  • Protocol
  • First Online:
Retinal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1715))

Abstract

Adeno-associated virus (AAV) has shown promise as a therapeutic gene delivery vector for inherited retinal degenerations in both preclinical disease models and human clinical trials. The retinas of nonhuman primates (NHPs) share many anatomical similarities to humans and are an important model for evaluating AAV gene delivery. Recent evidence has shown that preexisting immunity in the form of neutralizing antibodies (NABs) in NHPs strongly correlates with weak or lack of AAV transduction in the retina when administered intravitreally, work with translational implications. This necessitates prescreening of NHPs before intravitreal delivery of AAV. In this chapter, we describe a method for screening NHP serum for preexisting NABs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bainbridge JW, Smith AJ, Barker S et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  CAS  PubMed  Google Scholar 

  3. Simonelli F, Maguire AM, Testa F et al (2010) Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 18:643–650

    Article  CAS  PubMed  Google Scholar 

  4. Vandenberghe LH, Bell P, Maguire AM et al (2013) AAV9 targets cone photoreceptors in the nonhuman primate retina. PLoS One 8:e53463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dalkara D, Kolstad KD, Caporale N et al (2009) Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther 17:2096–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bennett J, Maguire AM, Cideciyan AV et al (1999) Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci U S A 96:9920–9925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jacobson SG, Boye SL, Aleman TS et al (2006) Safety in nonhuman primates of ocular AAV2- RPE65, a candidate treatment for blindness in leber congenital amaurosis. Hum Gene Ther 17:845–858

    Article  CAS  PubMed  Google Scholar 

  8. Vandenberghe LH, Bell P, Maguire AM et al (2011) Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med 3:88ra54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yin L, Greenberg K, Hunter JJ et al (2011) Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmal Vis Sci 52:2775–2783

    Article  CAS  Google Scholar 

  10. Lu Q, Ganjawala TH, Ivanova E et al (2016) AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates. Gene Ther 23:680–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sengupta A, Chaffiol A, Macé E et al (2016) Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. EMBO Mol Med 8:1248–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lotery AJ, Yang GS, Mullins RF et al (2003) Adeno-associated virus type 5: transduction efficiency and cell-type specificity in the primate retina. Hum Gene Ther 14:1663–1671

    Article  CAS  PubMed  Google Scholar 

  13. Boye SE, Alexander JJ, Boye SL et al (2012) The human rhodopsin kinase promoter in an AAV5 vector confers rod- and cone-specific expression in the primate retina. Hum Gene Ther 23:1101–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mancuso K, Hauswirth WW, Li Q et al (2009) Gene therapy for red–green colour blindness in adult primates. Nature 461:784–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bell CL, Vandenberghe LH, Bell P et al (2011) The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J Clin Invest 121:2427–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong L, Li B, Jayandharan G et al (2008) Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 381:194–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petrs-Silva H, Dinculescu A, Li Q et al (2009) Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 19:293–301

    Article  Google Scholar 

  18. Petrs-Silva H, Dinculescu A, Li Q et al (2008) High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 17:463–471

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ye GJ, Budzynski E, Sonnentag P et al (2015) Safety and biodistribution evaluation in cynomolgus macaques of rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus vector expressing retinoschisin. Hum Gene Ther Clin Dev 26:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15:445–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dalkara D, Byrne LC, Klimczak RR et al (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5:189ra76

    Article  PubMed  Google Scholar 

  22. Charbel Issa P, De Silva SR, Lipinski DM et al (2013) Assessment of tropism and effectiveness of new primate-derived hybrid recombinant AAV serotypes in the mouse and primate retina. PLoS One 8:e60361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weber M, Rabinowitz J, Provost N et al (2003) Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 7:774–781

    Article  CAS  PubMed  Google Scholar 

  24. Amado D, Mingozzi F, Hui D et al (2010) Safety and efficacy of subretinal readministration of a viral vector in large animals to treat congenital blindness. Sci Transl Med 2:21ra16

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bennett J, Ashtari M, Wellman J et al (2012) AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 4:120ra15

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bennet J, Wellman J, Marshall KA et al (2016) Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet 388:661–672

    Article  Google Scholar 

  27. Li Q, Miller R, Han PY et al (2008) Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis 14:1760–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kotterman MA, Yin L, Strazzeri JM et al (2014) Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Ther 22:116–126

    Article  PubMed  PubMed Central  Google Scholar 

  29. Flannery JG, Visel M (2012) Adeno-associated viral vectors for gene therapy of inherited retinal degenerations. Methods Mol Biol 935:351–356

    Article  Google Scholar 

  30. Rapti R, Louis-Jeune V, Kohlbrenner E et al (2009) Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly usedanimal models. Mol Ther 20:73–83

    Article  Google Scholar 

Download references

Acknowledgments

We thank the members of both the Flannery and Schaffer labs including M.A. Kotterman for her work on the development of the serum screen. This work was funded by NIH 5R01EY022975.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David V. Schaffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Day, T.P., Byrne, L.C., Flannery, J.G., Schaffer, D.V. (2018). Screening for Neutralizing Antibodies Against Natural and Engineered AAV Capsids in Nonhuman Primate Retinas. In: Boon, C., Wijnholds, J. (eds) Retinal Gene Therapy. Methods in Molecular Biology, vol 1715. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7522-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7522-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7521-1

  • Online ISBN: 978-1-4939-7522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics