Skip to main content

Dual AAV Vectors for Stargardt Disease

  • Protocol
  • First Online:
Retinal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1715))

Abstract

Stargardt disease (STGD1), due to mutations in the large ABCA4 gene, is the most common inherited macular degeneration in humans. Attempts at developing gene therapy approaches for treatment of STGD1 are currently ongoing. Among all the vectors available for gene therapy of inherited retinal diseases, those based on adeno-associated viruses (AAV) are the most promising given the efficacy shown in various animal models and their excellent safety profile in humans, as confirmed in many ongoing clinical trials. However, one of the main obstacles for the use of AAV is their limited effective packaging capacity of about 5 kb. Taking advantage of the AAV genome’s ability to concatemerize , others and we have recently developed dual AAV vectors to overcome this limit. We tested dual AAV vectors for ABCA4 delivery, and found that they transduce efficiently both mouse and pig photoreceptors , and rescue the Abca4−/− mouse retinal phenotype, indicating their potential for gene therapy of STGD1. This chapter details how we designed dual AAV vectors for the delivery of the ABCA4 gene and describes the techniques that can be explored to evaluate dual AAV transduction efficiency in vitro and in the retina, and their efficacy in the mouse model of STGD1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Molday RS, Zhang K (2010) Defective lipid transport and biosynthesis in recessive and dominant Stargardt macular degeneration. Prog Lipid Res 49:476–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allikmets R, Singh N, Sun H et al (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246

    Article  CAS  PubMed  Google Scholar 

  3. Trapani I, Puppo A, Auricchio A (2014) Vector platforms for gene therapy of inherited retinopathies. Prog Retin Eye Res 43:108–128

    Article  CAS  PubMed  Google Scholar 

  4. Dalkara D, Goureau O, Marazova K et al (2016) Let there be light: gene and cell therapy for blindness. Hum Gene Ther 27:134–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trapani I, Banfi S, Simonelli F et al (2015) Gene therapy of inherited retinal degenerations: prospects and challenges. Hum Gene Ther 26:193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carvalho LS, Vandenberghe LH (2015) Promising and delivering gene therapies for vision loss. Vis Res 111:124–133

    Article  PubMed  Google Scholar 

  7. Colella P, Auricchio A (2012) Gene therapy of inherited retinopathies: a long and successful road from viral vectors to patients. Hum Gene Ther 23:796–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lipinski DM, Thake M, MacLaren RE (2013) Clinical applications of retinal gene therapy. Prog Retin Eye Res 32:22–47

    Article  CAS  PubMed  Google Scholar 

  9. Trapani I, Colella P, Sommella A et al (2014) Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med 6:194–211

    CAS  PubMed  Google Scholar 

  10. Dyka FM, Boye SL, Chiodo VA et al (2014) Dual adeno-associated virus vectors result in efficient in vitro and in vivo expression of an oversized gene, MYO7A. Hum Gene Ther Methods 25:166–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lopes VS, Boye SE, Louie CM et al (2013) Retinal gene therapy with a large MYO7A cDNA using adeno-associated virus. Gene Ther 20:824–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colella P, Trapani I, Cesi G et al (2014) Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors. Gene Ther 21:450–456

    Article  CAS  PubMed  Google Scholar 

  13. Yan Z, Zhang Y, Duan D et al (2000) Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci U S A 97:6716–6721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duan D, Yue Y, Engelhardt JF (2001) Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 4:383–391

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh A, Yue Y, Lai Y et al (2008) A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol Ther 16:124–130

    Article  CAS  PubMed  Google Scholar 

  16. Trapani I, Colella P, Sommella A et al (2013) Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med 6:194–211

    PubMed  PubMed Central  Google Scholar 

  17. Ghosh A, Yue Y, Duan D (2011) Efficient transgene reconstitution with hybrid dual AAV vectors carrying the minimized bridging sequences. Hum Gene Ther 22:77–83

    Article  CAS  PubMed  Google Scholar 

  18. Auricchio A, Hildinger M, O'Connor E et al (2001) Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Hum Gene Ther 12:71–76

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Chirmule N, Gao G et al (2000) CD40 ligand-dependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: role of immature dendritic cells. J Virol 74:8003–8010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang FQ, Anand V, Maguire AM et al (2001) Intraocular delivery of recombinant virus. Methods Mol Med 47:125–139

    CAS  PubMed  Google Scholar 

  21. Mussolino C, della Corte M, Rossi S et al (2011) AAV-mediated photoreceptor transduction of the pig cone-enriched retina. Gene Ther 18:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weng J, Mata NL, Azarian SM et al (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice. Cell 98:13–23

    Article  CAS  PubMed  Google Scholar 

  23. Doria M, Ferrara A, Auricchio A (2013) AAV2/8 vectors purified from culture medium with a simple and rapid protocol transduce murine liver, muscle, and retina efficiently. Hum Gene Ther Methods. 24:392–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong X, Tian W, Wang G et al (2010) Establishment of an AAV reverse infection-based array. PLoS One 5:e13479

    Article  PubMed  PubMed Central  Google Scholar 

  25. Allocca M, Mussolino C, Garcia-Hoyos M et al (2007) Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 81:11372–11380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mattapallil MJ, Wawrousek EF, Chan CC et al (2012) The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci 53:2921–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gargiulo A, Bonetti C, Montefusco S et al (2009) AAV-mediated tyrosinase gene transfer restores melanogenesis and retinal function in a model of oculo-cutaneous albinism type I (OCA1). Mol Ther 17:1347–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to Raffaele Castello (Scientific Office, TIGEM, Pozzuoli, Italy) for the critical reading of this manuscript. Funding: The work was supported by the following: the European Research Council/ERC Grant agreement no282085 RetGeneTx; the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant agreement no 242013 Treatrush; the NIH (grant R24 EY019861-01A); the Italian Telethon Foundation (grant TGM11MT1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Trapani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trapani, I. (2018). Dual AAV Vectors for Stargardt Disease. In: Boon, C., Wijnholds, J. (eds) Retinal Gene Therapy. Methods in Molecular Biology, vol 1715. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7522-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7522-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7521-1

  • Online ISBN: 978-1-4939-7522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics