Generation of Innate Immune Reporter Cells Using Retroviral Transduction

  • Yamel Cardona Gloria
  • Eicke Latz
  • Dominic De NardoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1714)


Innate immune cells are notoriously difficult to transfect; however, retroviruses can be used to stably integrate genes of interest into the host genome of primary or immortalized immune cells resulting in the generation of reporter cells. Here, we provide a detailed protocol covering the production of retroviruses, retroviral infection of innate immune target cells (including isolation and differentiation of murine bone marrow cells to macrophages), and several methods for enrichment of positively transduced cells.


Retrovirus Infection Transduction Innate immune reporter cells Bone marrow isolation Bone marrow-derived macrophages Fluorescent protein Innate immunity 



We thank R. Stahl (Institute of Innate Immunity, Bonn) for assistance in generating the murine IRAK4-mCitrine and control mCitrine retroviral plasmids. This work was supported in part by the intramural BONFOR research support at the University of Bonn (D.D).


  1. 1.
    Labzin LI, Schmidt SV, Masters SL, Beyer M, Krebs W, Klee K, Stahl R, Lutjohann D, Schultze JL, Latz E, De Nardo D (2015) ATF3 is a key regulator of macrophage IFN responses. J Immunol 195(9):4446–4455CrossRefPubMedGoogle Scholar
  2. 2.
    Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G, Brenker C, Nordhoff M, Mirandola SR, Al-Amoudi A, Mangan MS, Zimmer S, Monks BG, Fricke M, Schmidt RE, Espevik T, Jones B, Jarnicki AG, Hansbro PM, Busto P, Marshak-Rothstein A, Hornemann S, Aguzzi A, Kastenmuller W, Latz E (2014) The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol 15(8):727–737CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sun J, Li N, KS O, Dutta B, Vayttaden SJ, Lin B, Ebert TS, De Nardo D, Davis J, Bagirzadeh R, Lounsbury NW, Pasare C, Latz E, Hornung V, Fraser ID (2016) Comprehensive RNAi-based screening of human and mouse TLR pathways identifies species-specific preferences in signaling protein use. Sci Signal 9(409):ra3CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Beilharz M, De Nardo D, Latz E, Franklin BS (2016) Measuring NLR oligomerization II: detection of ASC speck formation by confocal microscopy and immunofluorescence. Methods Mol Biol 1417:145–158CrossRefPubMedGoogle Scholar
  5. 5.
    De Nardo D (2015) Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine 74(2):181–189CrossRefPubMedGoogle Scholar
  6. 6.
    Motshwene PG, Moncrieffe MC, Grossmann JG, Kao C, Ayaluru M, Sandercock AM, Robinson CV, Latz E, Gay NJ (2009) An oligomeric signaling platform formed by the toll-like receptor signal transducers MyD88 and IRAK-4. J Biol Chem 284(37):25404–25411CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300):885–890CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ferrao R, Zhou H, Shan Y, Liu Q, Li Q, Shaw DE, Li X, Wu H (2014) IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly. Mol Cell 55(6):891–903CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C, Takada H, Wakeham A, Itie A, Li S, Penninger JM, Wesche H, Ohashi PS, Mak TW, Yeh WC (2002) Severe impairment of interleukin-1 and toll-like receptor signalling in mice lacking IRAK-4. Nature 416(6882):750–756CrossRefPubMedGoogle Scholar
  10. 10.
    Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K, Soudais C, Dupuis S, Feinberg J, Fieschi C, Elbim C, Hitchcock R, Lammas D, Davies G, Al-Ghonaium A, Al-Rayes H, Al-Jumaah S, Al-Hajjar S, Al-Mohsen IZ, Frayha HH, Rucker R, Hawn TR, Aderem A, Tufenkeji H, Haraguchi S, Day NK, Good RA, Gougerot-Pocidalo MA, Ozinsky A, Casanova JL (2003) Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299(5615):2076–2079CrossRefPubMedGoogle Scholar
  11. 11.
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9(8):847–856CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kutner RH, Zhang XY, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4(4):495–505CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Yamel Cardona Gloria
    • 1
  • Eicke Latz
    • 2
    • 3
    • 4
  • Dominic De Nardo
    • 5
    • 6
    Email author
  1. 1.Department of Immunology, Interfaculty Institute for Cell BiologyUniversity of TübingenTübingenGermany
  2. 2.Institute of Innate ImmunityUniversity Hospital, University of BonnBonnGermany
  3. 3.Department of Infectious Diseases and ImmunologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  4. 4.German Center for Neurodegenerative DiseasesBonnGermany
  5. 5.Inflammation DivisionThe Walter & Eliza Hall Institute of Medical ResearchParkvilleAustralia
  6. 6.Department of Medical BiologyThe University of MelbourneParkvilleAustralia

Personalised recommendations