Skip to main content

Modeling Primary Human Monocytes with the Trans–Differentiation Cell Line BLaER1

  • Protocol
  • First Online:
Book cover Innate Immune Activation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1714))

Abstract

Monocytes and macrophages play a pivotal role in the induction and shaping of immune responses. Expressing a broad array of pattern recognition receptors (PRRs), monocytes and macrophages constitute an integral component of the innate branch of the immune system. Traditionally, the majority of innate immune sensing and signaling pathways have been studied in macrophages of the murine system. This is largely due to the fact that genetic loss-of-function studies are amenable in this species. On the other hand, human cell lines of the monocyte-macrophage cell lineage have been widely used to study myeloid cells in vitro. However, commonly utilized models (e.g., THP-1 cells) only mimic a limited spectrum of the immunobiology of primary human myeloid cells. Recently, we have explored the possibility to fill this gap with a human trans-differentiation cell culture system, in which lineage conversion from malignant B-lineage cells to monocytes/macrophages is caused by the inducible nuclear translocation of a C/EBPα transgene, BLaER1 cells. Using this model, we were able to characterize a novel inflammasome signaling entity that could not have been uncovered in the murine system or THP-1 cells. Here, we describe the handling of BLaER1 cells, providing a detailed protocol for their induced trans-differentiation. We also provide data to demonstrate the applicability of the BLaER1 monocyte/macrophage system to study phagocytosis and various PRR cascades in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mak TW, Penninger JM, Ohashi PS (2001) Knockout mice: a paradigm shift in modern immunology. Nat Rev Immunol 1:11–19. https://doi.org/10.1038/35095551

    Article  CAS  PubMed  Google Scholar 

  2. Khare S, Dorfleutner A, Bryan NB et al (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36:464–476. https://doi.org/10.1016/j.immuni.2012.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738. https://doi.org/10.4049/jimmunol.172.5.2731

    Article  CAS  PubMed  Google Scholar 

  4. Cavlar T, Deimling T, Ablasser A et al (2013) Species-specific detection of the antiviral small-molecule compound CMA by STING. EMBO J 32:1440–1450. https://doi.org/10.1038/emboj.2013.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schroder K, Irvine KM, Taylor MS et al (2012) Conservation and divergence in toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc Natl Acad Sci 109:E944–E953. https://doi.org/10.1073/pnas.1110156109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsuchiya S, Yamabe M, Yamaguchi Y et al (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 26:171–176. https://doi.org/10.1002/ijc.2910260208

    Article  CAS  PubMed  Google Scholar 

  7. Sundström C, Nilsson K (1976) Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer 17:565–577. https://doi.org/10.1002/ijc.2910170504

    Article  PubMed  Google Scholar 

  8. Gaidt MM, Ebert TS, Chauhan D et al (2016) Human monocytes engage an alternative inflammasome pathway. Immunity 44:833–846. https://doi.org/10.1016/j.immuni.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  9. Chanput W, Peters V, Wichers H (2015) THP-1 and U937 cells. In: Verhoeckx K, Cotter P, López-Expósito I et al (eds) Impact food bioact. Heal. Vitr. Ex vivo model. Springer International Publishing, Cham, pp 147–159

    Google Scholar 

  10. Chanput W, Mes J, Vreeburg RA et al (2010) Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds. Food Funct 1:254–261. https://doi.org/10.1039/c0fo00113a

    Article  CAS  PubMed  Google Scholar 

  11. Klinken SP, Alexander WS, Adams JM (1988) Hemopoietic lineage switch: v-raf oncogene converts Emu-myc transgenic B cells into macrophages. Cell 53:857–867. https://doi.org/10.1016/S0092-8674(88)90309-1

    Article  CAS  PubMed  Google Scholar 

  12. Borzillo GV, Ashmun R, Sherr CJ (1990) Macrophage lineage switching of murine early pre-B lymphoid cells expressing transduced fms genes. Mol Cell Biol 10:2703–2714. https://doi.org/10.1128/MCB.10.6.2703.Updated

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–676. https://doi.org/10.1016/S0092-8674(04)00419-2

    Article  CAS  PubMed  Google Scholar 

  14. Bussmann LH, Schubert A, Vu Manh TP et al (2009) A robust and highly efficient immune cell reprogramming system. Cell Stem Cell 5:554–566. https://doi.org/10.1016/j.stem.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  15. Rapino F, Robles EF, Richter-Larrea JA et al (2017) C/EBPa induces highly efficient macrophage transdifferentiation of B lymphoma and leukemia cell lines and impairs their tumorigenicity. Cell Rep 19(6):1981. http://doi.org/10.1016/j.celrep.2017.04.072

  16. Schlee M, Roth A, Hornung V et al (2009) Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31:25–34. https://doi.org/10.1016/j.immuni.2009.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veit Hornung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gaidt, M.M., Rapino, F., Graf, T., Hornung, V. (2018). Modeling Primary Human Monocytes with the Trans–Differentiation Cell Line BLaER1. In: De Nardo, D., De Nardo, C. (eds) Innate Immune Activation. Methods in Molecular Biology, vol 1714. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7519-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7519-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7518-1

  • Online ISBN: 978-1-4939-7519-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics