Skip to main content

Genome-Wide Analysis of DNA Methylation in Single Cells Using a Post-bisulfite Adapter Tagging Approach

  • Protocol
  • First Online:
Next Generation Sequencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1712))

Abstract

DNA methylation is an epigenetic mark implicated in the regulation of key biological processes. Using high-throughput sequencing technologies and bisulfite-based approaches, it is possible to obtain comprehensive genome-wide maps of the mammalian DNA methylation landscape with a single-nucleotide resolution and absolute quantification. However, these methods were only applicable to bulk populations of cells. Here, we present a protocol to perform whole-genome bisulfite sequencing on single cells (scBS-Seq) using a post-bisulfite adapter tagging approach. In this method, bisulfite treatment is performed prior to library generation in order to both convert unmethylated cytosines and fragment DNA to an appropriate size. Then DNA fragments are pre-amplified with concomitant integration of the sequencing adapters, and libraries are subsequently amplified and indexed by PCR. Using scBS-Seq we can accurately measure DNA methylation at up to 50% of individual CpG sites and 70% of CpG islands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220

    Article  CAS  PubMed  Google Scholar 

  2. Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575

    Article  CAS  PubMed  Google Scholar 

  3. Smallwood SA, Kelsey G (2012) De novo DNA methylation: a germ cell perspective. Trends Genet 28:33–42

    Article  CAS  PubMed  Google Scholar 

  4. Seisenberger S, Peat JR, Hore TA et al (2012) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond Ser B Biol Sci 368:20110330

    Article  Google Scholar 

  5. Harris RA, Wang T, Coarfa C et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28:1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bernstein BE, Stamatoyannopoulos JA, Costello JF et al (2010) The NIH roadmap Epigenomics mapping consortium. Nat Biotechnol 28(10):1045–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. ENCODE Project Consortium (2004) The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306(5696):636–640

    Article  Google Scholar 

  8. Hon GC, Rajagopal N, Shen Y et al (2013) Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45(10):1198–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xie W, Schultz MD, Lister R et al (2013) Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153(5):1134–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smallwood SA, Tomizawa S-I, Krueger F et al (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smallwood SA, Kelsey G (2012) Genome-wide analysis of DNA methylation in low cell numbers by reduced representation bisulfite sequencing. In: Genomic imprinting. Humana Press, Totowa, NJ, pp 187–197

    Chapter  Google Scholar 

  12. Miura F, Enomoto Y, Dairiki R et al (2012) Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 40:e136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shirane K, Toh H, Kobayashi H et al (2013) Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet 9:e1003439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobayashi H, Sakurai T, Imai M et al (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 8:e1002440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peat JR, Dean W, Clark SJ et al (2014) Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation. Cell Rep 9(6):1990–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smallwood SA, Lee HJ, Angermueller C et al (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11(8):817–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nashun B, Hill PW, Smallwood SA et al (2015) Continuous histone replacement by Hira is essential for normal transcriptional regulation and de novo DNA methylation during mouse oogenesis. Mol Cell 60(4):611–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quail MA, Otto TD, Gu Y et al (2012) Optimal enzymes for amplifying sequencing libraries. Nat Methods 9:10–11

    Article  CAS  Google Scholar 

  19. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics 27:1571–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heather J. Lee or Sébastien A. Smallwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, H.J., Smallwood, S.A. (2018). Genome-Wide Analysis of DNA Methylation in Single Cells Using a Post-bisulfite Adapter Tagging Approach. In: Head, S., Ordoukhanian, P., Salomon, D. (eds) Next Generation Sequencing. Methods in Molecular Biology, vol 1712. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7514-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7514-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7512-9

  • Online ISBN: 978-1-4939-7514-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics