Skip to main content

Sampling, Extraction, and High-Throughput Sequencing Methods for Environmental Microbial and Viral Communities

  • Protocol
  • First Online:
Next Generation Sequencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1712))

Abstract

The emergence of high-throughput sequencing technologies has deepened our understanding of complex microbial communities and greatly facilitated the study of as-yet uncultured microbes and viruses. Studies of complex microbial communities require high-quality data to generate valid results. Here, we detail current methods of microbial and viral community sample acquisition, DNA extraction, sample preparation, and sequencing on Illumina high-throughput platforms. While using appropriate analytical tools is important, it must not overshadow the need for establishing a proper experimental design and obtaining sufficient numbers of samples for statistical purposes. Researchers must also take care to sample biologically relevant sites and control for potential confounding factors (e.g., contamination).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nechvatal JM, Ram JL, Basson MD, Namprachan P, Niec SR, Badsha KZ et al (2008) Fecal collection, ambient preservation, and DNA extraction for PCR amplification of bacterial and human markers from human feces. J Microbiol Methods 72(2):124–132

    Article  CAS  PubMed  Google Scholar 

  2. Hale VL, Tan CL, Knight R, Amato KR (2015) Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. J Microbiol Methods 113:16–26

    Article  PubMed  Google Scholar 

  3. Gray MA, Pratte ZA, Kellogg CA (2013) Comparison of DNA preservation methods for environmental bacterial community samples. FEMS Microbiol Ecol 83(2):468–477

    Article  CAS  PubMed  Google Scholar 

  4. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Torres PJ, Fletcher EM, Gibbons SM, Bouvet M, Doran KS, Kelley ST (2015) Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ 3:e1373

    Article  PubMed  PubMed Central  Google Scholar 

  6. Meadow JF, Altrichter AE, Kembel SW, Moriyama M, O’Connor TK, Womack AM et al (2014) Bacterial communities on classroom surfaces vary with human contact. Microbiome 2(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9:259

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meadow JF, Bateman AC, Herkert KM, O’Connor TK, Green JL (2013) Significant changes in the skin microbiome mediated by the sport of roller derby. PeerJ 1:e53

    Article  PubMed  PubMed Central  Google Scholar 

  9. Forney LJ, Gajer P, Williams CJ, Schneider GM, Koenig SS, McCulle SL et al (2010) Comparison of self-collected and physician-collected vaginal swabs for microbiome analysis. J Clin Microbiol 48(5):1741–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107(26):11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

    Article  PubMed  Google Scholar 

  13. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150(3):470–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563

    Article  CAS  PubMed  Google Scholar 

  15. Gorzelak MA, Gill SK, Tasnim N, Ahmadi-Vand Z, Jay M, Gibson DL (2015) Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool. PLoS One 10(8):e0134802

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kumar R, Eipers P, Little RB, Crowley M, Crossman DK, Lefkowitz EJ et al (2014) Getting started with microbiome analysis: sample acquisition to bioinformatics. Curr Protoc Hum Genet 82:18.8.1–18.829

    Article  Google Scholar 

  17. Weynberg KD, Wood-Charlson EM, Suttle CA, Oppen MJ v (2014) Generating viral metagenomes from the coral holobiont. Front Microbiol 5:206

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marhaver KL, Edwards RA, Rohwer F (2008) Viral communities associated with healthy and bleaching corals. Environ Microbiol 10(9):2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F (2009) Laboratory procedures to generate viral metagenomes. Nat Protoc 4(4):470–483

    Article  CAS  PubMed  Google Scholar 

  20. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71(10):491–499

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Tian RM, Gao ZM, Bougouffa S, Qian PY (2014) Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis. PLoS One 9(3):e90053

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moser LA, Ramirez-Crvajal L, Puri V, Pauszek SJ, Matthews K, Diley KA et al (2016) A universal next-generation sequencing protocol to generate noninfectious barcoded cDNA libraries from high-containment RNA viruses. mSystems 1(3):e00039–e00015

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott T. Kelley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Torres, P.J., Kelley, S.T. (2018). Sampling, Extraction, and High-Throughput Sequencing Methods for Environmental Microbial and Viral Communities. In: Head, S., Ordoukhanian, P., Salomon, D. (eds) Next Generation Sequencing. Methods in Molecular Biology, vol 1712. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7514-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7514-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7512-9

  • Online ISBN: 978-1-4939-7514-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics