Skip to main content

Co-culture of H295R Adrenocortical Carcinoma and BeWo Choriocarcinoma Cells to Study Feto-placental Interactions: Focus on Estrogen Biosynthesis

  • Protocol
  • First Online:
Book cover Preeclampsia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1710))

Abstract

Estrogens are produced in large amounts during pregnancy, as a result of a tightly regulated cooperation between the maternal and fetal adrenal cortex, which produce androgen precursors, and the placental villous trophoblast, which transforms these precursors into estrogens. These estrogens play an important role in proper placental function, in adaptation of the mother to pregnancy, as well as in adequate fetal development. Disruption of estrogen production is associated with poor pregnancy outcomes and fetal malformation or altered fetal programming. Pregnant women may be exposed to endocrine disruptors from environmental sources or medications, and it is crucial to study the effects of such compounds on feto-placental steroidogenesis. The H295R/BeWo co-culture model offers the opportunity to study these interactions, by making it possible to evaluate the effects of chemical exposures on androgen and estrogen biosynthesis, as well as on various other aspects of feto-placental communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gazdar AF, Oie HK, Shackleton CH, Chen TR, Triche TJ, Myers CE, Chrousos GP, Brennan MF, Stein CA, Larocca RV (1990) Establishment and characterization of a human adrenocortical carcinoma cell-line that expresses multiple pathways of steroid-biosynthesis. Cancer Res 50:5488–5496

    CAS  Google Scholar 

  2. Poulsen MS, Rytting E, Mose T, Knudsen LE (2009) Modeling placental transport: correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol In Vitro 23:1380–1386

    Article  CAS  Google Scholar 

  3. Prouillac C, Lecoeur S (2010) The role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies. Drug Metab Dispos 10:1623–1235

    Article  Google Scholar 

  4. Audus KL (1999) Controlling drug delivery across the placenta. Eur J Pharm Sci 8:161–165

    Article  CAS  Google Scholar 

  5. Hudon Thibeault AA, Deroy K, Vaillancourt C, Sanderson JT (2014) A unique co-culture model for fundamental and applied studies of human fetoplacental steroidogenesis and interference by environmental chemicals. Environ Health Perspect 122:371–377

    CAS  Google Scholar 

  6. Myatt L, Sun K (2010) Role of fetal membranes in signaling of fetal maturation and parturition. Int J Dev Biol 54:545–553

    Article  CAS  Google Scholar 

  7. Gell JS, Oh J, Rainey WE, Carr BR (1998) Effect of estradiol on DHEAS production in the human adrenocortical cell line, H295R. J Soc Gynecol Invest 5:144–148

    Article  CAS  Google Scholar 

  8. Rao CV, Zhou XL, Lei ZM (2004) Functional luteinizing hormone/chorioninc gonadotropin receptors in human adrenal cortical H295R cells. Biol Reprod 71:579–587

    Article  CAS  Google Scholar 

  9. Kaludjerovic J, Ward WE (2012) The interplay between estrogen and fetal adrenal cortex. J Nutr Metab 2012:1–12

    Article  Google Scholar 

  10. Mastorakos G, Ilias I (2003) Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann N Y Acad Sci 997:136–149

    Article  CAS  Google Scholar 

  11. Tsatsaris V, Malassiné A, Fournier T, Handschuh K, Schaaps J-P, Foidart J-M, Evain-Brion D (2006) Placenta humain. Gynécol Obstétr 42:1–23

    Google Scholar 

  12. Albrecht ED, Aberdeen GW, Pepe GJ (2005) Estrogen elicits cortical zone-specific effects on development of the primate fetal adrenal gland. Endocrinology 146:1737–1744

    Article  CAS  Google Scholar 

  13. Lash GE, Ansari T, Bischof P, Burton GJ, Chamley L, Crocker I, Dantzer V, Desoye G, Drewlo S, Fazleabas A, Jansson T, Keating S, Kliman HJ, Lang I, Mayhew T, Meiri H, Miller RK, Nelson DM, Pfarrer C, Roberts C, Sammar M, Sharma S, Shiverick K, Strunk D, Turner MA, Huppertz B (2009) IFPA meeting 2008 workshops report. Placenta 30:S4–S14

    Article  Google Scholar 

  14. Jeschke U, Richter D-U, Möbius B-M, Briese V, Myolonas I, Friese K (2007) Stimulation of progesterone, estradiol and cortisol in trophoblast tumor BeWo cells by glycodelin A N-glycans. Anticancer Res 27:2101–2108

    CAS  Google Scholar 

  15. Albrecht ED, Bonagura TW, Burleigh DW, Enders AC, Aberdeen GW, Pepe GJ (2006) Suppression of extravillous trophoblast invasion of uterine spiral arteries by estrogen during early baboon pregnancy. Placenta 27:483–490

    Article  CAS  Google Scholar 

  16. Gambino YP, Maymo JL, Perez Perez A, Calvo JC, Sanchez-Margalet V, Varone CL (2012) Elsevier Trophoblast Research Award lecture: molecular mechanisms underlying estrogen functions in trophoblastic cells – focus on leptin expression. Placenta 33:S63–S70

    Article  Google Scholar 

  17. Olwenn MV, Shialis T, Lester JN, Scrimshaw MD, Boobis AR, Voulvoulis N (2008) Testicular dysgenesis syndrome and the estrogen hypothesis: a quantitative meta-analysis. Environ Health Perspect 116:149–157

    Google Scholar 

  18. Toppari J, Virtanen HE, Main KM, Skakkebaek NE (2010) Cryptorchidism and hypospadias as a sign of testicular dysgenesis syndrome (TDS): Environmental connection. Birth Defects Res A Clin Mol Teratol 88:910–919

    Article  CAS  Google Scholar 

  19. Dumitrescu A, Aberdeen GW, Pepe GJ, Albrecht ED (2014) Placental estrogen suppresses cyclin D1 expression in the nonhuman primate fetal adrenal cortex. Endocrinology 155:4774–4784

    Article  PubMed  Google Scholar 

  20. Sirianni R, Rehman KS, Carr BR, Parker CR, Rainey WE (2005) Corticotropin-releasing hormone directly stimulates cortisol and the cortisol biosynthetic pathway in human fetal adrenal cells. J Clin Endocrinol Metabol 90:279–285

    Article  CAS  Google Scholar 

  21. Sirianni R, Mayhew BA, Carr BR, Parker CR, Rainey WE (2005) Corticotropin-releasing hormone (CRH) and urocortin act through type 1 CRH receptors to stimulate dehydroepiandrosterone sulfate production in human fetal adrenal cells. J Clin Endocrinol Metabol 90:5393–5400

    Article  CAS  Google Scholar 

  22. Smith R, Mesiano S, Chan E-C, Brown S, Jaffe RB (1998) Corticotropin-releasing hormone directly and preferentially stimulates dehydroepiandrosterone sulfate secretion by human fetal adrenal cortical cells. J Clin Endocrinol Metabol 83:2916–2920

    CAS  Google Scholar 

  23. Riopel L, Branchaud CL, Goodyer CG, Zweig M, Lipowski L, Adkar V, Lefebvre Y (1989) Effect of placental factors on growth and function of the human fetal adrenal in vitro. Biol Reprod 41:779–789

    Article  CAS  Google Scholar 

  24. Gennari-Moser C, Khankin EV, Schuller S, Escher G, Frey BM, Portmann CB, Baumann MU, Lehmann AD, Surbek D, Karumanchi SA, Frey FJ, Mohaupt MG (2011) Regulation of placental growth by aldosterone and cortisol. Endocrinology 152:263–271

    Article  CAS  Google Scholar 

  25. Frolova AI, O'Neill K, Moley KH (2011) Dehydroepiandrosterone inhibits glucose flux through the pentose phosphate pathway in human and mouse endometrial stromal cells, preventing decidualization and implantation. Mol Endocrinol 25:1444–1455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Réseau de recherche en santé environnementale as part of the Fonds de recherche du Québec (FRQ)-Santé (C.V., J.T.S.), the Natural Sciences and Engineering Research Council of Canada (NSERC) grants 313312-2012 (J.T.S.) and 262011-2009 (C.V.), the March of Dimes Foundation (C.V.), as well as studentship awards to A.A.H.T. from NSERC, FRQ-Nature et Technologies, FRQ-Santé, and Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Thomas Sanderson or Cathy Vaillancourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thibeault, AA.H., Sanderson, J.T., Vaillancourt, C. (2018). Co-culture of H295R Adrenocortical Carcinoma and BeWo Choriocarcinoma Cells to Study Feto-placental Interactions: Focus on Estrogen Biosynthesis. In: Murthi, P., Vaillancourt, C. (eds) Preeclampsia . Methods in Molecular Biology, vol 1710. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7498-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7498-6_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7497-9

  • Online ISBN: 978-1-4939-7498-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics