Skip to main content

Optimized Specific Isolation of Placenta-Derived Exosomes from Maternal Circulation

  • Protocol
  • First Online:
Preeclampsia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1710))

Abstract

Exosomes are small (~100 nm) vesicles that carry a wide range of molecules including proteins, RNAs, and DNA. Exosomes are secreted from a wide range of cells including placental cells. Interestingly, exosomes secreted from placental cells have been identified in maternal circulation as early as in 6 weeks of gestation, and their concentration increases with the gestational age. While there is growing interest in elucidating the role of exosomes during normal and complicated pregnancies (such as preeclampsia), progress in the field has been delayed because of the inability to isolate placental exosomes from maternal circulation. Therefore, here we describe a workflow to isolate placental exosomes from maternal circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kuklina EV, Ayala C, Callaghan WM (2009) Hypertensive disorders and severe obstetric morbidity in the United States. Obstet Gynecol 113(6):1299–1306

    Article  PubMed  Google Scholar 

  2. Ananth CV, Keyes KM, Wapner RJ (2013) Pre-eclampsia rates in the United States, 1980-2010: age-period-cohort analysis. Brit Med J 347:f6564

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xiao DY, Ohlendorf J, Chen YL, Taylor DD, Rai SN, Waigel S et al (2012) Identifying mRNA, MicroRNA and protein profiles of melanoma exosomes. PLoS One 7(10):e46874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal MicroRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10(1):42–46

    Article  CAS  PubMed  Google Scholar 

  5. Tannetta DS, Dragovic RA, Gardiner C, Redman CW, Sargent IL (2013) Characterisation of syncytiotrophoblast vesicles in normal pregnancy and pre-eclampsia: expression of Flt-1 and endoglin. PLoS One 8(2):e56754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mitchell MD, Peiris HN, Kobayashi M, Koh YQ, Duncombe G, Illanes SE et al (2015) Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol 213(4):S173–S181

    Article  CAS  PubMed  Google Scholar 

  7. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  8. Salomon C, Scholz-Romero K, Sarker S, Sweeney E, Kobayashi M, Correa P et al (2015) Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation. Diabetes 65:598

    Article  PubMed  Google Scholar 

  9. Sarker S, Scholz-Romero K, Perez A, Illanes SE, Mitchell MD, Rice GE et al (2014) Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J Transl Med 12:204

    Article  PubMed  PubMed Central  Google Scholar 

  10. Salomon C, Torres MJ, Kobayashi M, Scholz-Romero K, Sobrevia L, Dobierzewska A et al (2014) A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One 9(6):e98667

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goldman-Wohl DS, Ariel I, Greenfield C, Hanoch J, Yagel S (2000) HLA-G expression in extravillous trophoblasts is an intrinsic property of cell differentiation: a lesson learned from ectopic pregnancies. Mol Hum Reprod 6(6):535–540

    Article  CAS  PubMed  Google Scholar 

  12. Hara N, Fujii T, Yamashita T, Kozuma S, Okai T, Taketani Y (1996) Altered expression of human leukocyte antigen G (HLA-G) on extravillous trophoblasts in preeclampsia: immunohistological demonstration with anti-HLA-G specific antibody “87G” and anti-cytokeratin antibody “CAM5.2”. Am J Reprod Immunol 36(6):349–358

    Article  CAS  PubMed  Google Scholar 

  13. Salomon C, Torres MJ, Kobayashi M, Scholz-Romero K, Sobrevia L, Dobierzewska A et al (2014) A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One 9(6):e98667

    Article  PubMed  PubMed Central  Google Scholar 

  14. Taylor DD, Zacharias W, Gercel-Taylor C (2011) Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol 728:235–246

    Article  CAS  PubMed  Google Scholar 

  15. Kalra H, Adda CG, Liem M, Ang CS, Mechler A, Simpson RJ et al (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13(22):3354–3364

    Article  CAS  PubMed  Google Scholar 

  16. Schageman J, Zeringer E, Li M, Barta T, Lea K, Gu J et al (2013) The complete exosome workflow solution: from isolation to characterization of RNA cargo. Biomed Res Int 2013:253957

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ban JJ, Lee M, Im W, Kim M (2015) Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun 461(1):76–79

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Rai AJ, DeCastro GJ, Zeringer E, Barta T, Magdaleno S et al (2015) An optimized procedure for exosome isolation and analysis using serum samples: application to cancer biomarker discovery. Methods 87:26–30

    Article  PubMed  Google Scholar 

  19. Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A et al (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031

    Article  PubMed  Google Scholar 

  20. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22

    PubMed  Google Scholar 

Download references

Acknowledgment

CS was in receipt of a Lions Medical Research Foundation Fellowship. This study was supported by The Lions Medical Research Foundation, UQ ECR award, Royal Brisbane and Women’s Foundation, Diabetes Australia, and UQ-Ochsner Seed Grant. The ISO17025 accredited research facility was supported by grants from Therapeutics Innovation Australia and the National Collaborative Research Infrastructure Strategy.

This review is supported partly by funding from the Lions Medical Research Foundation (LMRF), The University of Queensland, and Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT 1170809), Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Salomon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lai, A., Elfeky, O., Rice, G.E., Salomon, C. (2018). Optimized Specific Isolation of Placenta-Derived Exosomes from Maternal Circulation. In: Murthi, P., Vaillancourt, C. (eds) Preeclampsia . Methods in Molecular Biology, vol 1710. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7498-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7498-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7497-9

  • Online ISBN: 978-1-4939-7498-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics