Skip to main content

Prediction of Clinical Endpoints in Breast Cancer Using NMR Metabolic Profiles

  • Protocol
  • First Online:
Book cover Cancer Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1711))

Abstract

Metabolic profiles reflect biological conditions as a result of biochemical changes within a living system. It is therefore possible to associate metabolic signatures with clinical endpoints of diseases, such as breast cancer. Nuclear magnetic resonance (NMR) spectroscopy is one of the most common techniques used for metabolic profiling, and produces high dimensional datasets from which meaningful biological information can be extracted. Here, we present an overview of data analysis techniques used to achieve this, describing key steps in the procedure. Moreover, examples of clinical endpoints of interest are provided. Although these are specific for breast cancer, the procedures for the analysis of NMR spectra as described here are applicable to any type of cancer and to other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Clarke CJ, Haselden JN (2008) Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol Pathol 36(1):140–147. https://doi.org/10.1177/0192623307310947

    Article  CAS  PubMed  Google Scholar 

  2. Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R (2015) Metabolomics for laboratory diagnostics. J Pharm Biomed Anal 113:108–120. https://doi.org/10.1016/j.jpba.2014.12.017.

    Article  CAS  PubMed  Google Scholar 

  3. Keeler J, Understanding NMR (2010) Spectroscopy, 2nd edn. Wiley, Chichester, UK

    Google Scholar 

  4. Hu K, Westler WM, Markley JL (2011) Simultaneous quantification and identification of individual Chemicals in Metabolite Mixtures by two-dimensional extrapolated time-zero (1)H−(13)C HSQC (HSQC(0)). J Am Chem Soc 133(6):1662–1665. https://doi.org/10.1021/ja1095304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nicholson JK (1989) High resolution nuclear magnetic resonance spectroscopy in clinical chemistry and disease diagnosis. In: den Boer NC, van der Heiden C, Leijnse B, Souverijn JHM (eds) Clinical chemistry, an overview. Plenum Press, New York, NY

    Google Scholar 

  6. Le Gall G (2015) NMR spectroscopy of biofluids and extracts. In: Bjerrum TJ (ed) Metabonomics: methods and protocols. Springer, New York, NY, pp 29–36

    Google Scholar 

  7. Giskeødegård GF, Cao MD, Bathen TF (2015) High-resolution magic-angle-spinning NMR spectroscopy of intact tissue. In: Bjerrum TJ (ed) Metabonomics: methods and protocols. Springer, New York, NY, pp 37–50

    Google Scholar 

  8. Bathen TF, Geurts B, Sitter B, Fjøsne HE, Lundgren S, Buydens LM et al (2013) Feasibility of MR metabolomics for immediate analysis of resection margins during breast cancer surgery. PLoS One 8(4):e61578. https://doi.org/10.1371/journal.pone.0061578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vettukattil R (2015) Preprocessing of raw metabonomic data. In: Bjerrum TJ (ed) Metabonomics: methods and protocols. Springer, New York, NY, pp 123–136

    Google Scholar 

  10. Euceda LR, Giskeødegard GF, Bathen TF (2015) Preprocessing of NMR metabolomics data. Scand J Clin Lab Invest 75(3):193–203. https://doi.org/10.3109/00365513.2014.1003593

  11. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2(1):37–52. https://doi.org/10.1016/0169-7439(87)80084-9.

    Article  CAS  Google Scholar 

  12. The Mathworks Inc. Cophenetic correlation coefficient. http://www.mathworks.com/help/stats/cophenet.html#zmw57dd0e176726. Accessed 13 Apr 2016

  13. Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Series B Stat Methodol 63(2):411–423. https://doi.org/10.1111/1467-9868.00293

    Article  Google Scholar 

  14. Hawkins DM (2004) The problem of Overfitting. J Chem Inf Comput Sci 44(1):1–12. https://doi.org/10.1021/ci0342472

    Article  CAS  PubMed  Google Scholar 

  15. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58(2):109–130. https://doi.org/10.1016/S0169-7439(01)00155-1.

    Article  CAS  Google Scholar 

  16. Andersson M (2009) A comparison of nine PLS1 algorithms. J Chemometr 23(10):518–529. https://doi.org/10.1002/cem.1248

    Article  CAS  Google Scholar 

  17. van Velzen EJJ, Westerhuis JA, van Duynhoven JPM, van Dorsten FA, Hoefsloot HCJ, Jacobs DM et al (2008) Multilevel data analysis of a crossover designed human nutritional intervention study. J Proteome Res 7(10):4483–4491. https://doi.org/10.1021/pr800145j

    Article  PubMed  Google Scholar 

  18. Brougham DF, Ivanova G, Gottschalk M, Collins DM, Eustace AJ et al (2011) Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance. J Biomed Biotechnol 2011:8. https://doi.org/10.1155/2011/158094.

    Article  Google Scholar 

  19. Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML et al (2015) A tutorial review: metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding. Anal Chim Acta 879:10–23. https://doi.org/10.1016/j.aca.2015.02.012.

    Article  CAS  PubMed  Google Scholar 

  20. Wold S, Johansson E, Cocchi M (1993) PLS: partial least-squares projections to latent structures. In: Kubinyi H (ed) 3D QSAR in Drug Design. ESCOM, Leiden, The Netherlands, pp 523–550

    Google Scholar 

  21. Li H-D, Zeng M-M, Tan B-B, Liang Y-Z, Q-S X, Cao D-S (2010) Recipe for revealing informative metabolites based on model population analysis. Metabolomics 6(3):353–361. https://doi.org/10.1007/s11306-010-0213-z

    Article  CAS  Google Scholar 

  22. Rajalahti T, Arneberg R, Kroksveen AC, Berle M, Myhr K-M, Kvalheim OM (2009) Discriminating variable test and selectivity ratio plot: quantitative tools for interpretation and variable (biomarker) selection in complex spectral or chromatographic profiles. Anal Chem 81(7):2581–2590. https://doi.org/10.1021/ac802514y

    Article  CAS  PubMed  Google Scholar 

  23. Mehmood T, Liland KH, Snipen L, Sæbø S (2012) A review of variable selection methods in partial least squares regression. Chemometr Intell Lab Syst. 118:62–69. https://doi.org/10.1016/j.chemolab.2012.07.010.

    Article  CAS  Google Scholar 

  24. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, Velzen EJJ et al (2008) Assessment of PLSDA cross validation. Metabolomics 4(1):81–89. https://doi.org/10.1007/s11306-007-0099-6

    Article  CAS  Google Scholar 

  25. Riffenburgh RH (2006) Statistics in medicine, 2nd edn. Elsevier Academic Press, Burlington, MA

    Google Scholar 

  26. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità, Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, vol 8. Seeber, Firenze, pp 3–62. doi:citeulike-article-id:1778138

    Google Scholar 

  27. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57(1):289–300

    Google Scholar 

  28. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188

    Article  Google Scholar 

  29. Giskeødegård GF, Grinde MT, Sitter B, Axelson DE, Lundgren S, Fjøsne HE et al (2010) Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res 9(2):972–979. https://doi.org/10.1021/pr9008783

    Article  PubMed  Google Scholar 

  30. Cao MD, Giskeødegård GF, Bathen TF, Sitter B, Bofin A, Lønning PE et al (2012) Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy. BMC Cancer 12(1):1–11. https://doi.org/10.1186/1471-2407-12-39.

    Article  Google Scholar 

  31. Asiago VM, Alvarado LZ, Shanaiah N, Gowda GAN, Owusu-Sarfo K, Ballas RA et al (2010) Early detection of recurrent breast cancer using metabolite profiling. Cancer Res 70(21):8309–8318. https://doi.org/10.1158/0008-5472.can-10-1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tenori L, Oakman C, Morris PG, Gralka E, Turner N, Cappadona S et al (2015) Serum metabolomic profiles evaluated after surgery may identify patients with oestrogen receptor negative early breast cancer at increased risk of disease recurrence. Results from a retrospective study. Mol Oncol 9(1):128–139. https://doi.org/10.1016/j.molonc.2014.07.012.

    Article  CAS  PubMed  Google Scholar 

  33. Keun HC, Sidhu J, Pchejetski D, Lewis JS, Marconell H, Patterson M et al (2009) Serum molecular signatures of weight change during early breast cancer chemotherapy. Clin Cancer Res 15(21):6716–6723. https://doi.org/10.1158/1078-0432.ccr-09-1452

    Article  CAS  PubMed  Google Scholar 

  34. Bro R, Kamstrup-Nielsen MH, Engelsen SB, Savorani F, Rasmussen MA, Hansen L et al (2015) Forecasting individual breast cancer risk using plasma metabolomics and biocontours. Metabolomics 11(5):1376–1380. https://doi.org/10.1007/s11306-015-0793-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bernstein IH, Garvin CP, Teng GK (1988) Applied multivariate analysis. Springer, New York, NY

    Book  Google Scholar 

  36. Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab 10(2):486–489. https://doi.org/10.5812/ijem.3505

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guro F. Giskeødegård .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Euceda, L.R., Haukaas, T.H., Bathen, T.F., Giskeødegård, G.F. (2018). Prediction of Clinical Endpoints in Breast Cancer Using NMR Metabolic Profiles. In: von Stechow, L. (eds) Cancer Systems Biology. Methods in Molecular Biology, vol 1711. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7493-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7493-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7492-4

  • Online ISBN: 978-1-4939-7493-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics