Skip to main content

Quantitative Analysis of Tyrosine Kinase Signaling Across Differentially Embedded Human Glioblastoma Tumors

  • Protocol
  • First Online:
Cancer Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1711))

Abstract

Glioblastoma is the most aggressive primary brain tumor with a poor mean survival even with the current standard of care. Kinase signaling analyses of clinical glioblastoma samples provide a physiologically relevant view of oncogenic signaling networks. Here, we describe the methods that enable the quantification of protein expression profiles and phosphotyrosine signaling across flash frozen and optimal cutting temperature (OCT) compound embedded tumor specimens. The data derived from these experiments can be used to identify the intra- and inter-patient heterogeneity present in these tumors. Correlation and functional analyses on the quantitative protein expression and phosphotyrosine signaling data obtained from clinical samples can be used to identify tyrosine kinase signaling networks present in these tumors and reveal the differential expression of functionally related proteins. This chapter provides the quantitative mass spectrometry methods required for the identification of in vivo oncogenic signaling networks from human tumor specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466. https://doi.org/10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  3. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O'Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2006) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  Google Scholar 

  4. Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4(11):e7752. https://doi.org/10.1371/journal.pone.0007752

    Article  PubMed  PubMed Central  Google Scholar 

  5. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, TD W, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173. https://doi.org/10.1016/j.ccr.2006.02.019

    Article  CAS  PubMed  Google Scholar 

  6. Network TCGAR (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Article  Google Scholar 

  7. Krakstad C, Chekenya M (2010) Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics. Mol Cancer 9:135. https://doi.org/10.1186/1476-4598-9-135

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johnson H, White FM (2014) Quantitative analysis of signaling networks across differentially embedded tumors highlights interpatient heterogeneity in human glioblastoma. J Proteome Res 13(11):4581–4593. https://doi.org/10.1021/pr500418w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, TL G, Polakiewicz RD, Rush J, Comb MJ (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131(6):1190–1203. https://doi.org/10.1016/j.cell.2007.11.025

    Article  CAS  PubMed  Google Scholar 

  10. Drake JM, Graham NA, Lee JK, Stoyanova T, Faltermeier CM, Sud S, Titz B, Huang J, Pienta KJ, Graeber TG, Witte ON (2013) Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets. Proc Natl Acad Sci U S A 110(49):E4762–E4769. https://doi.org/10.1073/pnas.1319948110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Steu S, Baucamp M, von Dach G, Bawohl M, Dettwiler S, Storz M, Moch H, Schraml P (2008) A procedure for tissue freezing and processing applicable to both intra-operative frozen section diagnosis and tissue banking in surgical pathology. Virchows Arch 452(3):305–312. https://doi.org/10.1007/s00428-008-0584-y

    Article  PubMed  Google Scholar 

  12. Loken SD, Demetrick DJ (2005) A novel method for freezing and storing research tissue bank specimens. Hum Pathol 36(9):977–980. https://doi.org/10.1016/j.humpath.2005.06.016

    Article  CAS  PubMed  Google Scholar 

  13. Gajadhar AS, Johnson H, Slebos RJ, Shaddox K, Wiles K, Washington MK, Herline AJ, Levine DA, Liebler DC, White FM (2015) Phosphotyrosine signaling analysis in human tumors is confounded by systemic ischemia-driven artifacts and intra-specimen heterogeneity. Cancer Res 75(7):1495–1503. https://doi.org/10.1158/0008-5472.CAN-14-2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ, Akhavanfard S, Cahill DP, Aldape KD, Betensky RA, Louis DN, Iafrate AJ (2011) Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20(6):810–817. https://doi.org/10.1016/j.ccr.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  15. Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y, Ozawa T, Holland EC, Huse JT, Jhanwar S, Leversha MA, Mikkelsen T, Brennan CW (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 109(8):3041–3046. https://doi.org/10.1073/pnas.1114033109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavare S (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110(10):4009–4014. https://doi.org/10.1073/pnas.1219747110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson H, Del Rosario AM, Bryson BD, Schroeder MA, Sarkaria JN, White FM (2012) Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts. Mol Cell Proteomics 11(12):1724–1740. https://doi.org/10.1074/mcp.M112.019984

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4(9):1240–1250. https://doi.org/10.1074/mcp.M500089-MCP200

    Article  CAS  PubMed  Google Scholar 

  19. Curran TG, Bryson BD, Reigelhaupt M, Johnson H, White FM (2013) Computer aided manual validation of mass spectrometry-based proteomic data. Methods 61(3):219–226. https://doi.org/10.1016/j.ymeth.2013.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a generous gift from the James S. McDonnell Foundation and by NIH grants P30 CA014051 and R01 CA184320. The authors would like to thank Ms. Marcela White at the brain tumor bank (www.Braintumourbank.com) for access to patient materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Johnson, H., White, F.M. (2018). Quantitative Analysis of Tyrosine Kinase Signaling Across Differentially Embedded Human Glioblastoma Tumors. In: von Stechow, L. (eds) Cancer Systems Biology. Methods in Molecular Biology, vol 1711. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7493-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7493-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7492-4

  • Online ISBN: 978-1-4939-7493-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics