Skip to main content

A Robust Optimization Approach to Cancer Treatment under Toxicity Uncertainty

  • Protocol
  • First Online:
  • 6685 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1711))

Abstract

The design of optimal protocols plays an important role in cancer treatment. However, in clinical applications, the outcomes under the optimal protocols are sensitive to variations of parameter settings such as drug effects and the attributes of age, weight, and health conditions in human subjects. One approach to overcoming this challenge is to formulate the problem of finding an optimal treatment protocol as a robust optimization problem (ROP) that takes parameter uncertainty into account. In this chapter, we describe a method to model toxicity uncertainty. We then apply a mixed integer ROP to derive the optimal protocols that minimize the cumulative tumor size. While our method may be applied to other cancers, in this work we focus on the treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors (TKI). For simplicity, we focus on one particular mode of toxicity arising from TKI therapy, low blood cell counts, in particular low absolute neutrophil count (ANC). We develop optimization methods for locating optimal treatment protocols assuming that the rate of decrease of ANC varies within a given interval. We further investigated the relationship between parameter uncertainty and optimal protocols. Our results suggest that the dosing schedule can significantly reduce tumor size without recurrence in 360 weeks while insuring that toxicity constraints are satisfied for all realizations of uncertain parameters.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shi Z, Peng XX, Kim IW et al (2007) Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 67:1101220

    Google Scholar 

  2. Paraiso KH, Xiang Y, Rebecca VW et al (2011) PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 71:27502760

    Article  Google Scholar 

  3. Foo J, Michor F (2014) Evolution of acquired resistance to anti-cancer therapy. J Theor Biol 355:10

    Article  PubMed  Google Scholar 

  4. Leder K, Foo J, Skaggs B et al (2011) Fitness conferred by BCR-ABL kinase domain mutations determines the risk of pre-existing resistance in chronic myeloid leukemia. PLoS One 6(11):e27682. https://doi.org/10.1371/journal.pone.0027682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Foo J, Leder K (2013) Dynamics of cancer recurrence. Annals Appl Probab 23(4):1437–1468

    Article  Google Scholar 

  6. Swanson KR, Bridge C, Murray JD et al (2003) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216(1):1–10

    Article  PubMed  Google Scholar 

  7. Badri H, Watanabe Y, Leder K (2015) Optimal radiotherapy dose schedules under parametric uncertainty. Phys Med Biol 61(1):338

    Article  PubMed  Google Scholar 

  8. Zhou C, Wu YL, Chen G et al (2011) Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12(8):735–742

    Article  CAS  PubMed  Google Scholar 

  9. Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  CAS  PubMed  Google Scholar 

  10. Kantarjian H, Sawyers C, Hochhaus A et al (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346:645–652

    Article  CAS  PubMed  Google Scholar 

  11. Cortes JE, Jones D, O’Brien S et al (2010) Results of dasatinib in patients with early chronic-phase chronic myeloid leukemia. J Clin Oncol 28(3):398–404

    Article  CAS  PubMed  Google Scholar 

  12. Giles FJ, Abruzzese E, Rosti G et al (2010) Nilotinib is active in chronic and accelerated phase chronic myeloid leukemia following failure of imatinib and dasatinib therapy. Leukemia 24:1299–1301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. O’Hare T, Eide CA, Deininger MWN (2007) Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 110:2242–2249

    Article  PubMed  Google Scholar 

  14. He Q, Zhu JF, Dingli D et al (2016) Optimized treatment schedules for chronic myeloid leukemia. PLoS Comput Biol 12:e1005129

    Article  PubMed Central  PubMed  Google Scholar 

  15. Harrold JM, Parker RS (2009) Clinically relevant cancer chemotherapy dose scheduling via mixedinteger optimization. Comput Chem Eng 33(12):2042–2054

    Article  CAS  Google Scholar 

  16. Murray JM (1990) Some optimal control problems in cancer chemotherapy with a toxicity limit. Math Biosci 100(1):49–67

    Article  CAS  PubMed  Google Scholar 

  17. Murray JM (1990) Optimal control for a cancer chemotherapy problem with general growth and loss functions. Math Biosci 98:273–287

    Article  CAS  PubMed  Google Scholar 

  18. Hadjiandreou MM, Mitsis GG (2014) Mathematical modeling of tumor growth, drug-resistance, toxicity, and optimal therapy design. IEEE Trans Biomed Eng 61(2):415–425

    Article  PubMed  Google Scholar 

  19. Laird AK (1964) Dynamics of tumour growth. Br J Cancer 18(3):490–502

    Article  PubMed Central  Google Scholar 

  20. Martin RB (1992) Optimal control drug scheduling of cancer chemotherapy. Automatica 28:11131123

    Article  Google Scholar 

  21. Floares A Neural networks control of drug dosage regimens in cancer chemotherapy. SAIA, Cluj-Napoca, Transilvania

    Google Scholar 

  22. Weisstein, Eric W. Heaviside step function. MathWorld

    Google Scholar 

  23. Afenya EK (2001) Recovery of normal hemopoiesis in disseminated cancer therapy-a model. Math Biosci 172

    Google Scholar 

  24. Michor F, Hughes TP, Iwasa Y et al (2005) Dynamics of chronic myeloid leukaemia. Nature 435:1267–1270

    Article  CAS  PubMed  Google Scholar 

  25. Bozic I, Reiter JG, Allen B et al (2013) Evolutionary dynamics of cancer in response to targeted combination therapy. Elife 2:e00747

    Article  PubMed Central  PubMed  Google Scholar 

  26. Nanda S, Moore H, Lenhart S (2007) Optimal control of treatment in a mathematical model of chronic myelogenous leukemia. Math Biosci 210:143

    Article  PubMed  Google Scholar 

  27. O’Brien S, Berman E, Borghaei H et al (2009) NCCN clinical practice guidelines in oncology: chronic myelogenous leukemia. J Natl Compr Canc Netw 7(9):984–1023

    Article  PubMed  Google Scholar 

  28. Sokal JE, Cox EB, Baccarani M et al (1984) Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood 63:789–799

    CAS  PubMed  Google Scholar 

  29. Hasford J, Pfirrmann M, Hehlmann R et al (1998) A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. Writing Committee for the Collaborative CML Prognostic Factors Project Group. J Natl Cancer Inst 90:850–858

    Article  CAS  PubMed  Google Scholar 

  30. Scheijen B, Griffin JD (2002) Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 21:3314

    Article  CAS  PubMed  Google Scholar 

  31. Deininger MW, O’Brien S, Ford JM et al (2003) Practical management of patients with chronic myeloid leukemia receiving imatinib. J Clin Oncol 21(8):1637–1647

    Article  CAS  PubMed  Google Scholar 

  32. Katia BBP, Israel B, Carla B et al (2015) BCR-ABL mutations in Chronic Myeloid Leukemia treated with tyrosine kinase inhibitors and impact on survival. Cancer Invest 33:451–458

    Article  Google Scholar 

  33. Ravin JG, Hagop K, Susan O et al (2009) The use of nilotinib or dasatinib after failure to 2 prior tyrosine kinase inhibitors: long-term follow-up. Blood 114(20):4361

    Article  Google Scholar 

  34. Wei G, Rafiyath S, Liu D (2010) First-line treatment for chronic myeloid leukemia: dasatinib, nilotinib, or imatinib. J Hematol Oncol 3:47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Cornelison M, Jabbour EJ, Welch MA (2012) Managing side effects of tyrosine kinase inhibitor therapy to optimize adherence in patients with chronic myeloid leukemia: the role of the midlevel practitioner. J Support Oncol 10(1):14–24

    Article  CAS  PubMed  Google Scholar 

  36. Conchon M, Freitas CM, Rego MA et al (2011) Dasatinib - clinical trials and management of adverse events in imatinib resistant/intolerant chronic myeloid leukemia. Rev Bras Hematol Hemoter 33(2):131–139

    Article  PubMed Central  PubMed  Google Scholar 

  37. Marin D (2012) Initial choice of therapy among plenty for newly diagnosed chronic myeloid leukemia. Hematology Am Soc Hematol Educ Program 1:115–121

    Google Scholar 

  38. Foo J, Drummond MW, Clarkson B et al (2009) Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib. PLoS Comput Biol 5(9):e1000503

    Article  PubMed Central  PubMed  Google Scholar 

  39. Gruber FX, Ernst T, Porkka K et al (2012) Dynamics of the emergence of dasatinib and nilotinib resistance in imatinib-resistant CML patients. Leukemia 26:172–177

    Article  CAS  PubMed  Google Scholar 

  40. Cortes JE, Jones D, O’Brien S et al (2010) Nilotinib as front-line treatment for patients with chronic myeloid leukemia in early chronic phase. J Clin Oncol 28(3):392–397

    Article  CAS  PubMed  Google Scholar 

  41. Radich JP, Kopecky KJ, Appelbaum FR et al (2012) A randomized trial of dasatinib 100 mg versus imatinib 400 mg in newly diagnosed chronic-phase chronic myeloid leukemia. Blood 120(19):3898–3905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Deininger M, Mauro M, Matloub Y et al (2008) Prevalence of T315I, dasatinib-specific resistant mutations (F317L, V299L, and T315A), and nilotinib-specific resistant mutations (P-loop and F359) at the time of imatinib resistance in chronic-phase chronic myeloid leukemia (CP-CML). Blood 112:3236

    Google Scholar 

  43. Sawyers C (2004) Targeted cancer therapy. Nature 432:294–297

    Article  CAS  PubMed  Google Scholar 

  44. Cortes J, Talpaz M, O’Brien S et al (2005) Molecular responses in patients with chronic myelogenous leukemia in chronic phase treated with imatinib mesylate. Clin Cancer Res 11:3425

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JZ was supported by NSF grant DMS-1224362. HB was supported by NSF grant CMMI-1362236. KL was supported by NSF grants CMMI-1362236 and CMMI-1552764.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Leder .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Nominal Optimization Problem

The nominal optimization problem can be formulated as a MIOP as below:

$$ \min \sum \limits_{m\in M,\kern0.75em i\in I\backslash \left\{1\right\}}{x}_{i,m} $$
(7a)
$$ \mathrm{s}.\mathrm{t}.\kern1em {\overset{\cdotp }{x}}_1(t)=\sum \limits_{j=0}^3{z}^{m,j}\left({b}_1^j{\psi}_{x_1}-d\right){x}_1,\kern0.5em t\in \left[m\Delta t,\left(m+1\right)\Delta t\right],m\in M\backslash \left\{M\right\} $$
(7b)
$$ {\overset{\cdotp }{x}}_2(t)=\sum \limits_{j=0}^3{z}^{m,j}\left({b}_2^j\left(1-\left(n-2\right)\mu \right){\psi}_{x_2}-d\right){x}_2,t\in \left[m\Delta t,\left(m+1\right)\Delta t\right],m\in M\backslash \left\{M\right\} $$
(7c)
$$ {\overset{\cdotp }{x}}_i(t)=\sum \limits_{j=0}^3{z}^{m,j}\left(\left({b}_i^j{\psi}_{x_2}-d\right){x}_i+\mu {b}_2^j{\psi}_{x_2}{x}_2\right),\kern0.5em t\in \left[m\Delta t,\left(m+1\right)\Delta t\right],m\in M\backslash \left\{M\right\},3\le \mathrm{i}\le n $$
(7d)
$$ \sum \limits_{j\in J}{z}^{m,j}=1,\kern1.75em m\in M\backslash \left\{M\right\}, $$
(7e)
$$ {y}^{m+1}={\widehat{y}}^m-\sum \limits_{j\in J}{d}_{\mathrm{anc},j}{z}^{m,j},\kern1.75em m\in M\backslash \left\{M\right\}, $$
(7f)
$$ {\widehat{y}}^m=\min \left({y}^m,{\mathrm{ANC}}_{\mathrm{normal}}\right),\kern1.75em m\in M, $$
(7g)
$$ {L}_{anc}\le {\widehat{y}}^m,\kern1.75em m\in M, $$
(7h)
$$ {z}^{m,j}\in \left\{0,1\right\},\kern0.5em m\in M\backslash \left\{M\right\},j\in J $$
(7i)

where x(0) , y 0 are given. In Eqs. 7b, 7c, and 7d, the dynamics of NSC, WSC, and MSC are described, respectively. Equations 7e, and 7i indicate that during each week, only one type of drug or no drug is allowed. Equations 7f, 7g, and 7h describe the toxicity constraints.

As discussed in the previous work [26], the ODEs can be approximated by linear functions:

$$ \min \sum \limits_{m\in M,\kern0.75em i\in I\backslash \left\{1\right\}}{x}_{i,m} $$
$$ \mathrm{s}.\mathrm{t}.\kern1em {x}_{i,m+1}=\sum \limits_{j=0}^3{z}^{m,j}\left({C}_{i,0}^j+\sum \limits_{k=1}^n{C}_{i,k}^j{x}_{k,m}\right),\kern0.5em t\in \left[m\Delta t,\left(m+1\right)\Delta t\right],m\in M\backslash \left\{M\right\} $$
$$ \sum \limits_{j\in J}{z}^{m,j}=1,\kern1.75em m\in M\backslash \left\{M\right\} $$
$$ {y}^{m+1}={\widehat{y}}^m-\sum \limits_{j\in J}{d}_{\mathrm{anc},j}{z}^{m,j},\kern1.75em m\in M\backslash \left\{M\right\} $$
$$ {\widehat{y}}^m=\min \left({y}^m,{\mathrm{ANC}}_{\mathrm{normal}}\right),\kern1.75em m\in M $$
$$ {L}_{\mathrm{anc}}\le {\widehat{y}}^m,\kern1.75em m\in M $$
$$ {z}^{m,j}\in \left\{0,1\right\},\kern0.5em m\in M\backslash \left\{M\right\},j\in J $$

where x(0) , y 0 are given.

There are two types of nonlinear terms here: z m , j x i , m and \( {\widehat{y}}^m=\min \left({y}^m,{\mathrm{ANC}}_{\mathrm{normal}}\right) \).

To linearize z m , j x i , m , we introduce a new variable

$$ 0\le {v}_i^{m,j}\le {U}_i{z}^{m,j} $$
$$ -{U}_i\left(1-{z}^{m,j}\right)\le {v}_i^{m,j}-{x}_{i,m}\le {U}_i\left(1-{z}^{m,j}\right) $$

To linearize \( {\widehat{y}}^m=\min \left({y}^m,{\mathrm{ANC}}_{\mathrm{normal}}\right) \), we introduce a binary variable p m

$$ {\widehat{y}}^m\ge {\mathrm{ANC}}_{\mathrm{normal}}-{U}_y\left(1-{p}^m\right), $$
$$ {\widehat{y}}^m\ge {y}^m-{U}_y{p}^m, $$
$$ {\widehat{y}}^m\le {y}^m, $$
$$ {\widehat{y}}^m\le {\mathrm{ANC}}_{\mathrm{normal}}, $$
$$ {p}^m\in \left\{0,1\right\}. $$

The nominal problem can be transformed into a MILP as

$$ \min \sum \limits_{m\in M,\kern0.75em i\in I\backslash \left\{1\right\}}{x}_{i,m} $$
(8a)
$$ \mathrm{s}.\mathrm{t}.\kern0.5em {x}_{i,m+1}=\sum \limits_{j=0}^3\left({z}^{m,j}{C}_{i,0}^j+\sum \limits_{k=1}^n{C}_{i,k}^j{v}_k^{m,j}\right),\kern0.5em t\in \left[m\Delta t,\left(m+1\right)\Delta t\right],m\in M\backslash \left\{M\right\}, $$
(8b)
$$ 0\le {v}_i^{m,j}\le {U}_i{z}^{m,j}, $$
(8c)
$$ -{U}_i\left(1-{z}^{m,j}\right)\le {v}_i^{m,j}-{x}_{i,m}, $$
(8d)
$$ {v}_i^{m,j}-{x}_{i,m}\le {U}_i\left(1-{z}^{m,j}\right), $$
(8e)
$$ \sum \limits_{j\in J}{z}^{m,j}=1,\kern1em m\in M\backslash \left\{M\right\}, $$
(8f)
$$ {y}^{m+1}={\widehat{y}}^m-\sum \limits_{j\in J}{d}_{\mathrm{anc},j}{z}^{m,j},\kern1em m\in M\backslash \left\{M\right\}, $$
(8g)
$$ {\widehat{y}}^m\ge {\mathrm{ANC}}_{\mathrm{normal}}-{U}_y\left(1-{p}^m\right), $$
(8h)
$$ {\widehat{y}}^m\ge {y}^m-{U}_y{p}^m, $$
(8i)
$$ {\widehat{y}}^m\le {y}^m, $$
(8j)
$$ {\widehat{y}}^m\le {\mathrm{ANC}}_{\mathrm{normal}}, $$
(8k)
$$ {p}^m\in \left\{0,1\right\}, $$
(8l)
$$ {L}_{\mathrm{anc}}\le {\widehat{y}}^m,\kern1em m\in M, $$
(8m)
$$ {z}^{m,j}\in \left\{0,1\right\},\kern1em m\in M\backslash \left\{M\right\},j\in J, $$
(8n)

where x(0) , y 0 are given.

Appendix 2: ROP Model

In this section, we describe the mathematical details of the robust problem. We introduce parameters Γm that take values in the bounded intervals [0,|V m|], where V m is the index sets of parameters with uncertainty. Γm is not necessarily an integer. The role of parameters Γm is to adjust the robustness of the proposed model against the conservation level of solution, thus it is called protection level. The motivation of Γm is that it is unlikely that all the parameters with uncertainty vary at the same time and reach the maximal uncertainty. In other words, the model assumes that there exists only a subset of the parameter drift that influence the solution. More specifically, it assumes that there are up to ⌊Γm⌋ of uncertainty parameters which are allowed to deviate from their nominal values, and the toxicity decreasing rate \( {d}_{\mathrm{anc},j}^m \) changes by at most \( \left({\Gamma}^m-\left\lfloor {\Gamma}^m\right\rfloor \right){\widehat{C}}^j \), where ⌊Γm⌋ is the greatest integer ≤Γm. Note that, if we choose Γm = 0, we completely ignore the influence of parameter uncertainty and are using the nominal values of the uncertain parameters, and if we choose Γm = V m, then all the uncertain parameters are subjected to deviate from their nominal values. In this project, the maximum value of Γm is 3 since there are three parameters with uncertainty. Note however that only one drug is chosen for each period, parameter uncertainty of the other two drugs will not affect the robust optimal solution. Thus, the robust optimal solution under Γm = 1 is exactly the same as the ones under Γm > 1. The proposed robust counterpart of problem (Eq. 6) is as follows:

$$ \min \sum \limits_{m\in M,\kern0.75em i\in I\backslash \left\{1\right\}}{x}_{i,m} $$
(9a)
$$ \mathrm{s}.\mathrm{t}.\kern1em {y}^{m+1}-{\widehat{y}}^m+\sum \limits_{j\in J}{L}^j{z}^{m,j}+\underset{C_m^{\mathrm{RO}}}{\max}\left\{\sum \limits_{j\in {S}^m}{\widehat{C}}^j{z}^{m,j}+\left({\Gamma}^m-\left\lfloor {\Gamma}^m\right\rfloor \right){\widehat{C}}^{t^m}{z}^{m,{t}^m}\right\}, $$
(9b)
$$ {\displaystyle \begin{array}{l}(8b),(8c),(8d),(8e),(8f),(8h),\\ {}(8i),(8j),(8k),(8l),(8m),(8n)\end{array}} $$
(9c)

where \( {C}_m^{\mathrm{RO}}=\left\{{S}^m\cup \left\{{t}^m\right\}|{S}^m\subseteq {V}^m,\left|{S}^m\right|\le \left\lfloor {\Gamma}^m\right\rfloor, {t}^m\in {V}^m\backslash {S}^m\right\} \), S m is the index sets of uncertain parameters which are allowed to deviate from their nominal values. According to the method developed in [20], the maximization problem in Eq. 9b is equivalent to the following auxiliary problem:

$$ \max \kern0.75em \sum \limits_{j\in J}{\widehat{C}}^j{\eta}^{m,j}{z}^{m,j} $$
(10a)
$$ \mathrm{s}.\mathrm{t}.\kern1em 0\le {\eta}^{m,j}\le 1,\kern1em j\in J, $$
(10b)
$$ \sum \limits_{j\in J}{\eta}^{m,j}\le {\Gamma}^m, $$
(10c)

Equation 10c indicates that the total variation of the parameters cannot exceed some threshold Γm. Notice that problem (Eq. 11) is bounded. It is clear that η m , j = 0 is a feasible solution of (Eq. 11). By strong duality, the optimal objective value of problem (Eq. 11) is the same as the optimal objective value of its dual problem. It is easy to check that the dual problem can be written as

$$ \max\ {q}^m{\Gamma}^m+\sum \limits_{j\in J}{p}^{m,j} $$
(11a)
$$ \mathrm{s}.\mathrm{t}.\kern1em -{\widehat{C}}^j{z}^{m,j}+{\mathrm{q}}^{\mathrm{m}}+{p}^{m,j}\ge 0, $$
(11b)
$$ {q}^m\ge 0, $$
(11c)
$$ {p}^{m,j}\ge 0, $$
(11d)

Thus, the optimal solution of our robust problem can be obtained by solving the MILP:

$$ \min \sum \limits_{m\in M,\kern0.75em i\in I\backslash \left\{1\right\}}{x}_{i,m} $$
(12a)
$$ s.t.\kern1em {x}_{i,m+1}=\sum \limits_{j=0}^3\left({z}^{m,j}{C}_{i,0}^j+\sum \limits_{k=1}^n{C}_{i,k}^j{v}_k^{m,j}\right),\kern0.5em t\in \left[m\Delta t,\left(m+1\right)\Delta t\right],m\in M\backslash \left\{M\right\}, $$
(12b)
$$ 0\le {v}_i^{m,j}\le {U}_i{z}^{m,j}, $$
(12c)
$$ -{U}_i\left(1-{z}^{m,j}\right)\le {v}_i^{m,j}-{x}_{i,m}, $$
(12d)
$$ {v}_i^{m,j}-{x}_{i,m}\le {U}_i\left(1-{z}^{m,j}\right), $$
(12e)
$$ \sum \limits_{j\in J}{z}^{m,j}=1,\kern1em m\in M\backslash \left\{M\right\}, $$
(12f)
$$ {y}^{m+1}\le {\widehat{y}}^m-\sum \limits_{j\in J}{L}^j{z}^{m,j}-{q}^m{\Gamma}^m-\sum \limits_{j\in J}{p}^{m,j},\kern1em m\in M\backslash \left\{M\right\}, $$
(12g)
$$ {\widehat{y}}^m\ge {\mathrm{ANC}}_{\mathrm{normal}}-{U}_y\left(1-{p}^m\right), $$
(12h)
$$ {\widehat{y}}^m\ge {y}^m-{U}_y{p}^m, $$
(12i)
$$ {\widehat{y}}^m\le {y}^m, $$
(12j)
$$ {\widehat{y}}^m\le {\mathrm{ANC}}_{\mathrm{normal}}, $$
(12k)
$$ {p}^m\in \left\{0,1\right\}, $$
(12l)
$$ {L}_{\mathrm{anc}}\le {\widehat{y}}^m,\kern1em m\in M, $$
(12m)
$$ {z}^{m,j}\in \left\{0,1\right\},\kern1em m\in M\backslash \left\{M\right\},j\in J, $$
(12n)
$$ -{\widehat{C}}^j{z}^{m,j}+{q}^m+{p}^{m,j}\ge 0, $$
(12o)
$$ {q}^m\ge 0, $$
(12p)
$$ {p}^{m,j}\ge 0, $$
(12q)
$$ x(0),{y}^1,{\widehat{y}}^1\ \mathrm{are}\ \mathrm{given},\kern0.5em {p}^1=0 $$
(12r)

Appendix 3: Robust Optimal Solutions for 30 Weeks

In this section, we summarize all the robust optimal solutions discussed in Subheading. 4.4 (see Figs. 13, 14, 15, 16, and 17).

Fig. 13
figure 13

Robust optimal solutions under \( {\widehat{C}}^j=0.2\times {L}^j \) for 30 weeks. The initial conditions for NSC, WSC, Y 253F, and F317L are 9E + 06, 9E + 05, 1E + 04, and 1E + 04, respectively

Fig. 14
figure 14

Robust optimal solutions under \( {\widehat{C}}^j=0.2\times {L}^j \) for 30 weeks. The initial conditions for NSC, WSC, Y 253F, and F317L are 9E + 06, 5E + 05, 3E + 05, and 3E + 05, respectively

Fig. 15
figure 15

Robust optimal solutions under \( {\widehat{C}}^j=0.3\times {L}^j \) for 30 weeks. The initial conditions for NSC, WSC, Y 253F, and F317L are 9E + 06, 9E + 05, 1E + 04, and 1E + 04, respectively

Fig. 16
figure 16

Robust optimal solutions under \( {\widehat{C}}^j=0.3\times {L}^j \) for 30 weeks. The initial conditions for NSC, WSC, Y 253F, and F317L are 9E + 06, 9E + 05, 1E + 05, and 1E + 05, respectively

Fig. 17
figure 17

Robust optimal solutions under \( {\widehat{C}}^j=0.3\times {L}^j \) for 30 weeks. The initial conditions for NSC, WSC, Y 253F, and F317L are 9E + 06, 5E + 05, 3E + 05, and 3E + 05, respectively

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhu, J., Badri, H., Leder, K. (2018). A Robust Optimization Approach to Cancer Treatment under Toxicity Uncertainty. In: von Stechow, L. (eds) Cancer Systems Biology. Methods in Molecular Biology, vol 1711. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7493-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7493-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7492-4

  • Online ISBN: 978-1-4939-7493-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics