Skip to main content

Bioinformatics Approaches to Predict Drug Responses from Genomic Sequencing

  • Protocol
  • First Online:
Cancer Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1711))

Abstract

Fulfilling the promises of precision medicine will depend on our ability to create patient-specific treatment regimens. Therefore, being able to translate genomic sequencing into predicting how a patient will respond to a given drug is critical. In this chapter, we review common bioinformatics approaches that aim to use sequencing data to predict sample-specific drug susceptibility. First, we explain the importance of customized drug regimens to the future of medical care. Second, we discuss the different public databases and community efforts that can be leveraged to develop new methods for identifying new predictive biomarkers. Third, we cover the basic methods that are currently used to identify markers or signatures of drug response, without any prior knowledge of the drug’s mechanism of action. We further discuss how one can integrate knowledge about drug targets, mechanisms, and predictive markers to better estimate drug response in a diverse set of samples. We begin this section with a primer on popular methods to identify targets and mechanism of action for new small molecules. This discussion also includes a set of computational methods that incorporate other drug features, which do not relate to drug-induced genetic changes or sequencing data such as drug structures, side-effects, and efficacy profiles. Those additional drug properties can aid in gaining higher accuracy for the identification of drug target and mechanism of action. We then progress to discuss using these targets in combination with disease-specific expression patterns, known pathways, and genetic interaction networks to aid drug choice. Finally, we conclude this chapter with a general overview of machine learning methods that can integrate multiple pieces of sequencing data along with prior drug or biological knowledge to drastically improve response prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fry RC, Svensson JP, Valiathan C, Wang E, Hogan BJ, Bhattacharya S, Bugni JM, Whittaker CA, Samson LD (2008) Genomic predictors of interindividual differences in response to DNA damaging agents. Genes Dev 22(19):2621–2626. https://doi.org/10.1101/gad.1688508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rice SD, Heinzman JM, Brower SL, Ervin PR, Song N, Shen K, Wang DK (2010) Analysis of chemotherapeutic response heterogeneity and drug clustering based on mechanism of action using an in vitro assay. Anticancer Res 30(7):2805–2811

    CAS  PubMed  Google Scholar 

  3. Bosquet JG, Marchion DC, Chon H, Lancaster JM, Chanock S (2014) Analysis of chemotherapeutic response in ovarian cancers using publicly available high-throughput data. Cancer Res 74(14):3902–3912. https://doi.org/10.1158/0008-5472.CAN-14-0186

    Article  CAS  PubMed  Google Scholar 

  4. Sboner A, Elemento O (2016) A primer on precision medicine informatics. Brief Bioinform 17(1):145–153. https://doi.org/10.1093/bib/bbv032

    Article  PubMed  Google Scholar 

  5. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813–823. https://doi.org/10.1038/nrc1951

    Article  CAS  PubMed  Google Scholar 

  6. Abaan OD, Polley EC, Davis SR, Zhu YJ, Bilke S, Walker RL, Pineda M, Gindin Y, Jiang Y, Reinhold WC, Holbeck SL, Simon RM, Doroshow JH, Pommier Y, Meltzer PS (2013) The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res 73(14):4372–4382. https://doi.org/10.1158/0008-5472.Can-12-3342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reinhold WC, Varma S, Sousa F, Sunshine M, Abaan OD, Davis SR, Reinhold SW, Kohn KW, Morris J, Meltzer PS, Doroshow JH, Pommier Y (2014) NCI-60 whole exome sequencing and pharmacological CellMiner analyses. PLoS One 9(7). https://doi.org/10.1371/journal.pone.0101670

  8. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville EA, Pommier Y, Botstein D, Brown PO, Weinstein JN (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24(3):236–244. https://doi.org/10.1038/73439

    Article  CAS  PubMed  Google Scholar 

  9. Gholami AM, Hahne H, Wu ZX, Auer FJ, Meng C, Wilhelm M, Kuster B (2013) Global proteome analysis of the NCI-60 cell line panel. Cell Rep 4(3):609–620. https://doi.org/10.1016/j.celrep.2013.07.018

    Article  CAS  PubMed  Google Scholar 

  10. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu JJ, Aspesi P, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li NX, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity (483:603, 2012). Nature 492(7428):290–290. https://doi.org/10.1038/nature11735

    Article  CAS  Google Scholar 

  11. Stransky N, Ghandi M, Kryukov GV, Garraway LA, Lehar J, Liu M, Sonkin D, Kauffmann A, Venkatesan K, Edelman EJ, Riester M, Barretina J, Caponigro G, Schlegel R, Sellers WR, Stegmeier F, Morrissey M, Amzallag A, Pruteanu-Malinici I, Haber DA, Ramaswamy S, Benes CH, Menden MP, Iorio F, Stratton MR, McDermott U, Garnett MJ, Saez-Rodriguez J, Canc DS, Line CC, Inst B, Res NIB, Sensitivity GD, Hosp MG, Lab EMB, Inst EB, Inst WTS (2015) Pharmacogenomic agreement between two cancer cell line data sets. Nature 528(7580):84. https://doi.org/10.1038/nature15736

    CAS  Google Scholar 

  12. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935. https://doi.org/10.1126/science.1132939

    Article  CAS  PubMed  Google Scholar 

  13. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai HY, He YDD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D, Chakraburtty K, Simon J, Bard M, Friend SH (2000) Functional discovery via a compendium of expression profiles. Cell 102(1):109–126. https://doi.org/10.1016/S0092-8674(00)00015-5

    Article  CAS  PubMed  Google Scholar 

  14. Gayvert KM, Dardenne E, Cheung C, Boland MR, Lorberbaum T, Wanjala J, Chen Y, Rubin MA, Tatonetti NP, Rickman DS, Elemento O (2016) A computational drug repositioning approach for targeting oncogenic transcription factors. Cell Rep 15(11):2348–2356. https://doi.org/10.1016/j.celrep.2016.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dudley JT, Deshpande T, Butte AJ (2011) Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinform 12(4):303–311. https://doi.org/10.1093/bib/bbr013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Low SK, Takahashi A, Mushiroda T, Kubo M (2014) Genome-wide association study: a useful tool to identify common genetic variants associated with drug toxicity and efficacy in cancer pharmacogenomics. Clin Cancer Res 20(10):2541–2552. https://doi.org/10.1158/1078-0432.Ccr-13-2755

    Article  CAS  PubMed  Google Scholar 

  17. Zhou KX, Pearson ER (2013) Insights from genome-wide association studies of drug response. Annu Rev Pharmacol 53:299–310. https://doi.org/10.1146/annurev-pharmtox-011112-140237

    Article  CAS  Google Scholar 

  18. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369. https://doi.org/10.1038/nrg2344

    Article  CAS  PubMed  Google Scholar 

  19. Xu ZL, Taylor JA (2009) SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res 37:W600–W605. https://doi.org/10.1093/nar/gkp290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McKinney BA, Pajewski NM (2011) Six degrees of epistasis: statistical network models for GWAS. Front Genet 2:109. https://doi.org/10.3389/fgene.2011.00109

    CAS  PubMed  Google Scholar 

  21. Howie B, Marchini J, Stephens M (2011) Genotype imputation with thousands of genomes. G3 (Bethesda) 1(6):457–470. https://doi.org/10.1534/g3.111.001198

    Article  Google Scholar 

  22. Byun E, Caillier SJ, Montalban X, Villoslada P, Fernandez O, Brassat D, Comabella M, Wang J, Barcellos LF, Baranzini SE, Oksenberg JR (2008) Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol Chicago 65(3):337–E332. https://doi.org/10.1001/archneurol.2008.47

    Article  PubMed  Google Scholar 

  23. Liu CY, Batliwalla F, Li WT, Lee A, Roubenoff R, Beckman E, Khalili H, Damle A, Kern M, Furie R, Dupuis J, Plenge RM, Coenen MJH, Behrens TW, Carulli JP, Gregersen PK (2008) Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in rheumatoid arthritis. Mol Med 14(9-10):575–581. https://doi.org/10.2119/2008-00056.Liu

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, Gut I, Lathrop M, Collins R, Grp SC (2008) SLCO1B1 variants and statin-induced myopathy – a genomewide study. New Engl J Med 359(8):789–799

    Article  CAS  PubMed  Google Scholar 

  25. Bush WS, Moore JH (2012) Chapter 11: genome-wide association studies. PLoS Comput Biol 8(12). https://doi.org/10.1371/journal.pcbi.1002822

  26. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. https://doi.org/10.1086/519795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand WH, Samani NJ, Todd JA, Donnelly P, Barrett JC, Davison D, Easton D, Evans D, Leung HT, Marchini JL, Morris AP, Spencer CCA, Tobin MD, Attwood AP, Boorman JP, Cant B, Everson U, Hussey JM, Jolley JD, Knight AS, Koch K, Meech E, Nutland S, Prowse CV, Stevens HE, Taylor NC, Walters GR, Walker NM, Watkins NA, Winzer T, Jones RW, McArdle WL, Ring SM, Strachan DP, Pembrey M, Breen G, St Clair D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green EK, Grozeva D, Hamshere ML, Holmans PA, Jones IR, Kirov G, Moskvina V, Nikolov I, O'Donovan MC, Owen MJ, Collier DA, Elkin A, Farmer A, Williamson R, McGuffin P, Young AH, Ferrier IN, Ball SG, Balmforth AJ, Barrett JH, Bishop DT, Iles MM, Maqbool A, Yuldasheva N, Hall AS, Braund PS, Dixon RJ, Mangino M, Stevens S, Thompson JR, Bredin F, Tremelling M, Parkes M, Drummond H, Lees CW, Nimmo ER, Satsangi J, Fisher SA, Forbes A, Lewis CM, Onnie CM, Prescott NJ, Sanderson J, Mathew CG, Barbour J, Mohiuddin MK, Todhunter CE, Mansfield JC, Ahmad T, Cummings FR, Jewell DP, Webster J, Brown MJ, Lathrop GM, Connell J, Dominiczak A, Marcano CAB, Burke B, Dobson R, Gungadoo J, Lee KL, Munroe PB, Newhouse SJ, Onipinla A, Wallace C, Xue MZ, Caulfield M, Farrall M, Barton A, Bruce IN, Donovan H, Eyre S, Gilbert PD, Hider SL, Hinks AM, John SL, Potter C, Silman AJ, Symmons DPM, Thomson W, Worthington J, Dunger DB, Widmer B, Frayling TM, Freathy RM, Lango H, Perry JRB, Shields BM, Weedon MN, Hattersley AT, Hitman GA, Walker M, Elliott KS, Groves CJ, Lindgren CM, Rayner NW, Timpson NJ, Zeggini E, Newport M, Sirugo G, Lyons E, Vannberg F, Brown MA, Franklyn JA, Heward JM, Simmonds MJ, Hill AVS, Bradbury LA, Farrar C, Pointon JJ, Wordsmith P, Gough SCL, Seal S, Stratton MR, Rahman N, Ban M, Goris A, Sawcer SJ, Compston A, Conway D, Jallow M, Bumpstead SJ, Chaney A, Downes K, Ghori MJR, Gwilliam R, Inouye M, Keniry A, King E, McGinnis R, Potter S, Ravindrarajah R, Whittaker P, Withers D, Easton D, Pereira-Gale J, Hallgrimsdottir IB, Howie BN, Su Z, Teo YY, Vukcevic D, Bentley D, Caulfield M, Mathew CG, Worthington J, Consortium WTCC, Syndicate BRGGS, Collaborat BCS (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678. https://doi.org/10.1038/nature05911

    Article  CAS  Google Scholar 

  28. Gamazon ER, Huang RS, Cox NJ, Dolan ME (2010) Chemotherapeutic drug susceptibility associated SNPs are enriched in expression quantitative trait loci. Proc Natl Acad Sci U S A 107(20):9287–9292. https://doi.org/10.1073/pnas.1001827107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chung CM, Wang RY, Chen JW, Fann CSJ, Leu HB, Ho HY, Ting CT, Lin TH, Sheu SH, Tsai WC, Chen JH, Jong YS, Lin SJ, Chen YT, Pan WH (2010) A genome-wide association study identifies new loci for ACE activity: potential implications for response to ACE inhibitor. Pharmacogenomics J 10(6):537–544. https://doi.org/10.1038/tpj.2009.70

    Article  CAS  PubMed  Google Scholar 

  30. Diboun I, Wernisch L, Orengo CA, Koltzenburg M (2006) Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics 7. https://doi.org/10.1186/1471-2164-7-252

  31. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  PubMed  PubMed Central  Google Scholar 

  32. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10). https://doi.org/10.1186/gb-2010-11-10-r106

  33. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  34. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578. https://doi.org/10.1038/nprot.2012.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM (2003) A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 100(17):9991–9996. https://doi.org/10.1073/pnas.1732008100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lam LT, Davis RE, Pierce J, Hepperle M, Xu Y, Hottelet M, Nong Y, Wen D, Adams J, Dang L, Staudt LM (2005) Small molecule inhibitors of IkappaB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res 11(1):28–40

    CAS  PubMed  Google Scholar 

  37. Briones J (2009) Emerging therapies for B-cell non-Hodgkin lymphoma. Expert Rev Anticancer 9(9):1305–1316. https://doi.org/10.1586/Era.09.86

    Article  Google Scholar 

  38. Jimeno A, Tan AC, Coffa J, Rajeshkumar NV, Kulesza P, Rubio-Viqueira B, Wheelhouse J, Diosdado B, Messersmith WA, Lacobuzio-Donahue C, Maitra A, Varella-Garcia M, Hirsch FR, Meijer GA, Hidalgo M (2008) Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer. Cancer Res 68(8):2841–2849. https://doi.org/10.1158/0008-5472.Can-07-5200

    Article  CAS  PubMed  Google Scholar 

  39. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12):1739–1740. https://doi.org/10.1093/bioinformatics/btr260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, Jassal B, Jupe S, Korninger F, McKay S, Matthews L, May B, Milacic M, Rothfels K, Shamovsky V, Webber M, Weiser J, Williams M, Wu G, Stein L, Hermjakob H, D'Eustachio P (2016) The reactome pathway knowledgebase. Nucleic Acids Res 44(D1):D481–D487. https://doi.org/10.1093/nar/gkv1351

    Article  CAS  PubMed  Google Scholar 

  41. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L, D’Eustachio P (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42(Database issue):D472–D477. https://doi.org/10.1093/nar/gkt1102

    Article  CAS  PubMed  Google Scholar 

  42. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34. https://doi.org/10.1093/nar/27.1.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock RE, Brinkman FS, Lynn DJ (2013) InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res 41(Database issue):D1228–D1233. https://doi.org/10.1093/nar/gks1147

    Article  CAS  PubMed  Google Scholar 

  45. Lynn DJ, Winsor GL, Chan C, Richard N, Laird MR, Barsky A, Gardy JL, Roche FM, Chan TH, Shah N, Lo R, Naseer M, Que J, Yau M, Acab M, Tulpan D, Whiteside MD, Chikatamarla A, Mah B, Munzner T, Hokamp K, Hancock RE, Brinkman FS (2008) InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol 4:218. https://doi.org/10.1038/msb.2008.55

    Article  PubMed  PubMed Central  Google Scholar 

  46. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li HL, Gao ZT, Kang L, Zhang HL, Yang K, Yu KQ, Luo XM, Zhu WL, Chen KX, Shen JH, Wang XC, Jiang HL (2006) TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res 34:W219–W224. https://doi.org/10.1093/nar/gkl114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3):470–489. https://doi.org/10.1006/jmbi.1996.0477

    Article  CAS  PubMed  Google Scholar 

  49. Butina D, Segall MD, Frankcombe K (2002) Predicting ADME properties in silico: methods and models. Drug Discov Today 7(11):S83–S88. https://doi.org/10.1016/S1359-6446(02)02288-2

    Article  CAS  PubMed  Google Scholar 

  50. Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2010) Advances in computational methods to predict the biological activity of compounds. Expert Opin Drug Dis 5(7):633–654. https://doi.org/10.1517/17460441.2010.492827

    Article  CAS  Google Scholar 

  51. Wang KJ, Sun JZ, Zhou SF, Wan CL, Qin SY, Li C, He L, Yang L (2013) Prediction of drug-target interactions for drug repositioning only based on genomic expression similarity. PLoS Comput Biol 9(11):e1003315. https://doi.org/10.1371/journal.pcbi.1003315

    Article  PubMed  PubMed Central  Google Scholar 

  52. Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P (2008) Drug target identification using side-effect similarity. Science 321(5886):263–266. https://doi.org/10.1126/science.1158140

    Article  CAS  PubMed  Google Scholar 

  53. Madhukar NS, Huang L, Khade P, Gayvert K, Giannakakou P, Elemento O (2015) Abstract B162: small molecule target prediction and identification of novel anti-cancer compounds using a data-driven bayesian approach. Mol Cancer Ther 14(12 Supplement 2):B162. https://doi.org/10.1158/1535-7163.targ-15-b162

    Article  Google Scholar 

  54. Li J, Wood WH, Becker KG, Weeraratna AT, Morin PJ (2007) Gene expression response to cisplatin treatment in drug-sensitive and drug-resistant ovarian cancer cells. Oncogene 26(20):2860–2872. https://doi.org/10.1038/sj.onc.1210086

    Article  CAS  PubMed  Google Scholar 

  55. Lamb J (2007) The connectivity map: a new tool for biomedical research. Nat Rev Cancer 7(1):54–60. https://doi.org/10.1038/nrc2044

    Article  CAS  PubMed  Google Scholar 

  56. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500. https://doi.org/10.1126/science.1099314

    Article  CAS  PubMed  Google Scholar 

  57. Cappuzzo F, Bemis L, Varella-Garcia M (2006) HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. N Engl J Med 354(24):2619–2621. https://doi.org/10.1056/NEJMc060020

    Article  CAS  PubMed  Google Scholar 

  58. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN, Wolmark N (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684. https://doi.org/10.1056/NEJMoa052122

    Article  CAS  PubMed  Google Scholar 

  59. Young K, Minchom A, Larkin J (2012) BRIM-1, -2 and -3 trials: improved survival with vemurafenib in metastatic melanoma patients with a BRAF(V600E) mutation. Future Oncol 8(5):499–507. https://doi.org/10.2217/fon.12.43

    Article  CAS  PubMed  Google Scholar 

  60. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, GA MA, Group B-S (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516. https://doi.org/10.1056/NEJMoa1103782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P (2012) Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 11(11):873–886. https://doi.org/10.1038/nrd3847

    Article  CAS  PubMed  Google Scholar 

  62. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726. https://doi.org/10.1200/JCO.2002.20.3.719

    Article  CAS  PubMed  Google Scholar 

  63. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng SY, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou LH, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O'Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L, Network TR (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia F, Young N, Foster B, Moser M, Karasik E, Gillard B, Ramsey K, Sullivan S, Bridge J, Magazine H, Syron J, Fleming J, Siminoff L, Traino H, Mosavel M, Barker L, Jewell S, Rohrer D, Maxim D, Filkins D, Harbach P, Cortadillo E, Berghuis B, Turner L, Hudson E, Feenstra K, Sobin L, Robb J, Branton P, Korzeniewski G, Shive C, Tabor D, Qi LQ, Groch K, Nampally S, Buia S, Zimmerman A, Smith A, Burges R, Robinson K, Valentino K, Bradbury D, Cosentino M, Diaz-Mayoral N, Kennedy M, Engel T, Williams P, Erickson K, Ardlie K, Winckler W, Getz G, DeLuca D, MacArthur D, Kellis M, Thomson A, Young T, Gelfand E, Donovan M, Meng Y, Grant G, Mash D, Marcus Y, Basile M, Liu J, Zhu J, Tu ZD, Cox NJ, Nicolae DL, Gamazon ER, Im HK, Konkashbaev A, Pritchard J, Stevens M, Flutre T, Wen XQ, Dermitzakis ET, Lappalainen T, Guigo R, Monlong J, Sammeth M, Koller D, Battle A, Mostafavi S, McCarthy M, Rivas M, Maller J, Rusyn I, Nobel A, Wright F, Shabalin A, Feolo M, Sharopova N, Sturcke A, Paschal J, Anderson JM, Wilder EL, Derr LK, Green ED, Struewing JP, Temple G, Volpi S, Boyer JT, Thomson EJ, Guyer MS, Ng C, Abdallah A, Colantuoni D, Insel TR, Koester SE, Little AR, Bender PK, Lehner T, Yao Y, Compton CC, Vaught JB, Sawyer S, Lockhart NC, Demchok J, Moore HF (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45(6):580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  65. Sachlos E, Risueno RM, Laronde S, Shapovalova Z, Lee JH, Russell J, Malig M, McNicol JD, Fiebig-Comyn A, Graham M, Levadoux-Martin M, Lee JB, Giacomelli AO, Hassell JA, Fischer-Russell D, Trus MR, Foley R, Leber B, Xenocostas A, Brown ED, Collins TJ, Bhatia M (2012) Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 149(6):1284–1297. https://doi.org/10.1016/j.cell.2012.03.049

    Article  CAS  PubMed  Google Scholar 

  66. Madhukar NS, Elemento O, Pandey G (2015) Prediction of genetic interactions using machine learning and network properties. Front Bioeng Biotechnol 3(172). https://doi.org/10.3389/fbioe.2015.00172

  67. Chan DA, Giaccia AJ (2011) Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10(5):351–364. https://doi.org/10.1038/nrd3374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jerby-Arnon L, Pfetzer N, Waldman YY, McGarry L, James D, Shanks E, Seashore-Ludlow B, Weinstock A, Geiger T, Clemons PA, Gottlieb E, Ruppin E (2014) Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 158(5):1199–1209. https://doi.org/10.1016/j.cell.2014.07.027

    Article  CAS  PubMed  Google Scholar 

  69. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, Liu Q, Iorio F, Surdez D, Chen L, Milano RJ, Bignell GR, Tam AT, Davies H, Stevenson JA, Barthorpe S, Lutz SR, Kogera F, Lawrence K, McLaren-Douglas A, Mitropoulos X, Mironenko T, Thi H, Richardson L, Zhou W, Jewitt F, Zhang T, O'Brien P, Boisvert JL, Price S, Hur W, Yang W, Deng X, Butler A, Choi HG, Chang JW, Baselga J, Stamenkovic I, Engelman JA, Sharma SV, Delattre O, Saez-Rodriguez J, Gray NS, Settleman J, Futreal PA, Haber DA, Stratton MR, Ramaswamy S, McDermott U, Benes CH (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483(7391):570–575. https://doi.org/10.1038/nature11005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Menden MP, Iorio F, Garnett M, McDermott U, Benes CH, Ballester PJ, Saez-Rodriguez J (2013) Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One 8(4). https://doi.org/10.1371/journal.pone.0061318

  71. Costello JC, Heiser LM, Georgii E, Gonen M, Menden MP, Wang NJ, Bansal M, Ammad-ud-din M, Hintsanen P, Khan SA, Mpindi JP, Kallioniemi O, Honkela A, Aittokallio T, Wennerberg K, Collins JJ, Gallahan D, Singer D, Saez-Rodriguez J, Kaski S, Gray JW, Stolovitzky G, Community ND (2014) A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol 32(12):1202–U1257. https://doi.org/10.1038/nbt.2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Elemento Lab members and Natalie R. Davidson for their feedback and discussion. O.E. and N.M. are supported by the CAREER grant from National Science Foundation (DB1054964), NIH grant R01CA194547, the Starr CancerFoundation, as well as by startup funds from the Institute for Computational Biomedicine. Support for N.M. was also provided by the PhRMA Foundation Pre Doctoral Informatics Fellowship and by the Tri-Institutional Training Program in Computational Biology and Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Elemento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Madhukar, N.S., Elemento, O. (2018). Bioinformatics Approaches to Predict Drug Responses from Genomic Sequencing. In: von Stechow, L. (eds) Cancer Systems Biology. Methods in Molecular Biology, vol 1711. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7493-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7493-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7492-4

  • Online ISBN: 978-1-4939-7493-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics