Skip to main content

Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks

  • Protocol
  • First Online:
Cancer Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1711))

Abstract

Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.

Both authors equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Çınlar E (2011) Probability and stochastics. Graduate texts in mathematics, vol 261. Springer, New York

    Google Scholar 

  2. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(6119):580–584

    Google Scholar 

  3. Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284

    Google Scholar 

  4. Sahai E (2007) Illuminating the metastatic process. Nat Rev Cancer 7(10):737–749

    Google Scholar 

  5. WHO (2015) Cancer fact sheet. http://www.who.int/mediacentre/factsheets/fs297/en/ . Accessed 14 Jan 2016

    Google Scholar 

  6. Pantel K, Cote RJ, Fodstad O (1999) Detection and clinical importance of micrometastatic disease. J Natl Cancer Inst 91(13):1113–1124

    Google Scholar 

  7. Scott JG, Gerlee P, Basanta D, Fletcher AG, Maini PK, Anderson ARA (2013) Mathematical modeling of the metastatic process. In: Malek A (ed) Experimental metastasis: modeling and analysis. Springer, Dordrecht, pp 189–208

    Google Scholar 

  8. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Google Scholar 

  9. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Google Scholar 

  10. Michor F, Nowak MA, Iwasa Y (2006) Stochastic dynamics of metastasis formation. J Theor Biol 240(4):521–530

    Google Scholar 

  11. Haeno H, Michor F (2010) The evolution of tumor metastases during clonal expansion. J Theor Biol 263(1):30–44

    Google Scholar 

  12. Anderson AR, Quaranta V (2008) Integrative mathematical oncology. Nat Rev Cancer 8(3):227–234

    Google Scholar 

  13. Koscielny S, Tubiana M, Lê MG, Valleron J, Mouriesse H, Contesso G, Sarrazin D (1984) Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination. Br J Cancer 49(6):709–715

    Google Scholar 

  14. Michaelson JS, Silverstein M, Wyatt J, Weber G, Moore R, Halpern E, Kopans DB, Hughes K (2002) Predicting the survival of patients with breast carcinoma using tumor size. Cancer 95(4):713–723

    Google Scholar 

  15. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Google Scholar 

  16. Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L (1999) Tumor development under angiogenic signaling: a dynamical theory of tumor growth, response and postvascular dormancy. Cancer Res 59:4770–5

    CAS  PubMed  Google Scholar 

  17. Norton L (1988) A Gompertzian model of human breast cancer growth. Cancer Res 48:7067–7071

    Google Scholar 

  18. Verga F (2010) Modélisation mathématique de processus métastatiques. Ph.D. thesis, Aix-Marseille Université

    Google Scholar 

  19. Hart D, Shochat E, Agur Z (1998) The growth law of primary breast cancer as inferred from mammography screening trials data. Br J Cancer 78:382–387

    Google Scholar 

  20. Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JML, Hlatky L, Hahnfeldt P (2014) Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput Biol 10(8):e1003800

    Google Scholar 

  21. Bartoszyński R, Edler L, Hanin L, Kopp-Schneider A, Pavlova L, Tsodikov A, Zorin A, Yakovlev A (2001) Modeling cancer detection: tumor size as a source of information on unobservable stages of carcinogenesis. Math Biosci 171:113–142

    Google Scholar 

  22. Hanin L, Rose J, Zaider M (2006) A stochastic model for the sizes of detectable metastases. J Theor Biol 243:407–417

    Google Scholar 

  23. Iwata K, Kawasaki K, Shigesada N (2000) A dynamical model for the growth and size distribution of multiple metastatic tumors. J Theor Biol 203:177–186

    Article  CAS  PubMed  Google Scholar 

  24. Hartung N, Mollard S, Barbolosi D, Benabdallah A, Chapuisat G, Henry G, Giacometti S, Iliadis A, Ciccolini J, Faivre C, Hubert F (2014) Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice. Cancer Res 74:6397–6407

    Google Scholar 

  25. Benzekry S, Tracz A, Mastri M, Corbelli R, Barbolosi D, Ebos JML (2016) Modeling spontaneous metastasis following surgery: an in vivo-in silico approach. Cancer Res 76(3):535–547

    Google Scholar 

  26. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564

    Google Scholar 

  27. Newton PK, Mason J, Bethel K, Bazhenova LA, Nieva J, Kuhn P (2012) A stochastic Markov chain model to describe lung cancer growth and metastasis. PLoS One 7(4):e34637

    Google Scholar 

  28. Newton PK, Mason J, Bethel K, Bazhenova L, Nieva J, Norton L, Kuhn P (2013) Spreaders and sponges define metastasis in lung cancer: a Markov chain Monte Carlo mathematical model. Cancer Res 73(9):2760–2769

    Google Scholar 

  29. Comen E, Norton L, Massague J (2011) Clinical implications of cancer self-seeding. Nat Rev Clin Oncol 8(6):369–377

    Google Scholar 

  30. Scott JG, Basanta D, Anderson AR, Gerlee P (2013) A mathematical model of tumour self-seeding reveals secondary metastatic deposits as drivers of primary tumour growth. J R Soc Interface 10(82):20130011

    Google Scholar 

  31. Hanin L, Zaider M (2011) Effects of surgery and chemotherapy on metastatic progression of prostate cancer: evidence from the natural history of the disease reconstructed through mathematical modeling. Cancers 3(3):3632–3660

    Google Scholar 

  32. Wheldon TE (1988) Mathematical models in cancer research. Medical science series. Adam Hilger, Bristol/Philadelphia

    Google Scholar 

  33. Benzekry S, Gandolfi A, Hahnfeldt P (2014) Global dormancy of metastases due to systemic inhibition of angiogenesis. PLoS One 9(1):e84249

    Google Scholar 

  34. Bethge A, Schumacher U, Wedemann G (2015) Simulation of metastatic progression using a computer model including chemotherapy and radiation therapy. J Biomed Inform 57:74–87

    Google Scholar 

  35. Lewis PAW, Shedler GS (1979) Simulation of nonhomogeneous poisson processes by thinning. Nav Res Log Q 26(3):403

    Google Scholar 

  36. Sadahiro S, Suzuki T, Ishikawa K, Nakamura T, Tanaka Y, Masuda T, Mukoyama S, Yasuda S, Tajima T, Makuuchi H, Murayama C (2003) Recurrence patterns after curative resection of colorectal cancer in patients followed for a minimum of ten years. Hepatogastroenterology 50(53):1362–1366

    Google Scholar 

  37. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, Lin C, Leach C, Cannady RS, Cho H, Scoppa S, Hachey M, Kirch R, Jemal A, Ward E (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62(4):220–241

    Google Scholar 

  38. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  39. Barbolosi D, Benabdallah B, Hubert F, Verga F (2009) Mathematical and numerical analysis for a model of growing metastatic tumors. Math Biosci 218:1–14

    Google Scholar 

  40. Hartung N (2015) Efficient resolution of metastatic tumour growth models by reformulation into integral equations. Discrete Contin Dyn Syst B 20:445–467

    Google Scholar 

  41. Lavielle M (2014) Mixed effects models for the population approach. models, tasks, methods and tools. Chapman & Hall/CRC biostatistics series. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  42. Tornøe CW, Overgaard RV, Agersø H, Nielsen HA, Madsen H, Jonsson EN (2005) Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations. Pharm Res 22(8):1247–1258

    Google Scholar 

  43. Bulfoni M, Gerratana L, Del Ben F, Marzinotto S, Sorrentino M, Turetta M, Scoles G, Toffoletto B, Isola M, Beltrami CA, Di Loreto C, Beltrami AP, Puglisi F, Cesselli D (2016) In patients with metastatic breast cancer the identification of circulating tumor cells in epithelial-to-mesenchymal transition is associated with a poor prognosis. Breast Cancer Res 18(1):30

    Google Scholar 

  44. Paoletti C, Hayes DF (2016) Circulating tumor cells. Adv Exp Med Biol 882:235–258

    Google Scholar 

  45. Chen LL, Blumm N, Christakis NA, Barabasi AL, Deisboeck TA (2009) Cancer metastasis networks and the prediction of progression patterns. Br J Cancer 101(5):749–758

    Google Scholar 

Download references

Acknowledgements

The authors thank Florence Hubert, Charlotte Kloft, and Andrea Henrich for suggestions and critical reading of the manuscript. NH gratefully acknowledges financial support by the Agence Nationale de la Recherche under grant ANR-09-BLAN-0217-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Gomez .

Editor information

Editors and Affiliations

A Appendix: Proofs of Results of Section 5.4

A Appendix: Proofs of Results of Section 5.4

The proofs provided in this section are based on the following classical result on Poisson random measures. We refer to [45, Chap. 6, pp. 251] for further details. Also, note that this result directly yields Eqs. 2 through 5.

Proposition A.1.

Let (N t ) t ≥ 0 be a PP with intensity λ and P the corresponding Poisson random measure. We have for \( \phi, \psi \in {L}^1\left({\mathbb{R}}^{+},\lambda (u) du\right)\cap {L}^2\left({\mathbb{R}}^{+},\lambda (u) du\right) \)

$$ \mathbb{E}\left[\int \phi (u)P(du)\right]=\int \phi (u)\lambda (u) du, $$

and

$$ {\displaystyle \begin{array}{c}\mathbb{E}\left[\int \phi \left({u}_1\right)P\left(d{u}_1\right)\int \phi \left({u}_2\right)P\left(d{u}_2\right)\right]=\int \phi \left({u}_1\right)\lambda \left({u}_1\right)d{u}_1\int \psi \left({u}_2\right)\lambda \left({u}_2\right)d{u}_2\\ {}\kern15.5em +\int \phi (u)\psi (u)\lambda (u) du.\end{array}} $$

In other words, we can write the first order moment of the Poisson random measure P in a more compact form

$$ \mathbb{E}\left[P(du)\right]=\lambda (u) du, $$

as well as its second order moment

$$ \mathbb{E}\left[P\left(d{u}_1\right)P\left(d{u}_2\right)\right]=\lambda \left({u}_1\right)\lambda \left({u}_2\right)d{u}_1d{u}_2+\delta \left({u}_1-{u}_2\right)\lambda \left({u}_1\right)d{u}_1d{u}_2. $$

Moreover, to simplify notations in the forthcoming computations, we introduce the following convolution-like notation: for functions ϕ, ψ

$$ \phi \ast \psi (t):= \underset{0}{\overset{t}{\int }}\phi \left(t-u\right)\psi (u) du. $$
(16)

1.1 A.1 Proof of Proposition 5.1

We first need to establish the following lemma, which is proven further below.

Lemma A.1.

We have

$$ {e}_f={\lambda}_p\ast \left(f\left({X}_m\right)+{e}_{m,f}\right), $$
(17)

where e m, f has been introduced in Proposition 5.2.

This is not exactly the renewal equation we want. To derive the desired equation (Eq. 10) we just have to make the following remark. Taking λ p = λ m , Lemma A.1 gives that e m, f satisfies

$$ {e}_{m,f}={\lambda}_m\ast \left(f\left({X}_m\right)+{e}_{m,f}\right). $$

Hence, from (Eq. 17), we have

$$ {\displaystyle \begin{array}{ccc}{e}_f& =& {\lambda}_p\ast f\left({X}_m\right)+{\lambda}_p\ast \left({\lambda}_m\ast f\left({X}_m\right)+{\lambda}_m\ast {e}_{m,f}\right)\\ {}& =& {\lambda}_p\ast f\left({X}_m\right)+{\lambda}_m\ast \left({\lambda}_p\ast f\left({X}_m\right)+{\lambda}_p\ast {e}_{m,f}\right)\\ {}& =& {\lambda}_p\ast f\left({X}_m\right)+{\lambda}_m\ast {e}_f.\end{array}} $$
(18)

Now, let T > 0, we have from the last line of (Eq. 18) that for all t ∈ [0, T],

$$ {e}_f(t)\le \parallel f{\parallel}_{L^{\infty}\left(\left[{x}_m^0,{x}_m^{\infty}\right]\right)}\parallel {\lambda}_p{\parallel}_{L^{\infty}\left(\left[0,T\right]\right)}T+\parallel {\lambda}_m{\parallel}_{L^{\infty}\left(\left[0,T\right]\right)}\underset{0}{\overset{t}{\int }}{e}_f(u) du, $$

which gives using Gronwall’s inequality

$$ \underset{t\in \left[0,T\right]}{\sup }{e}_f(t)\le {C}_{T,f,{\lambda}_p,{\lambda}_m}\parallel f{\parallel}_{L^{\infty}\left(\left[{x}_m^0,{x}_m^{\infty}\right]\right)}<+\infty . $$
(19)

As a result, e f (t) &lt; + for all t ≥ 0 since T is arbitrary, and also

$$ \mathbb{P}\left(\right.{\mathrm{SMO}}_f(T)<+\infty \left)\right.=1. $$

Finally, using that t ↦ SMO f (t) is an increasing non-negative function, we have

$$ \mathbb{P}\left(\right.\forall t\in \left[0,T\right],\kern1em {\mathrm{SMO}}_f(t)<+\infty \left)\right.=1, $$

and then

$$ \mathbb{P}\left(\right.\forall t\ge 0,\kern1em {\mathrm{SMO}}_f(t)<+\infty \left)\right.=\underset{n\to +\infty }{\lim}\mathbb{P}\left(\right.\forall t\in \left[0,n\right],\kern1em {\mathrm{SMO}}_f(t)<+\infty \left)\right.=1. $$

Proof (of Lemma A.1).

Let us start with the following remark. According to the recursive definition (Eq. 11) of our PP cascade, one has

$$ {T}^{\left({n}_1,\dots, {n}_k\right)}={T}^{\left({n}_1\right)}+{\overline{T}}^{\left({n}_1,\dots, {n}_k\right)}, $$
(20)

where all the times

$$ \left\{\right.{\overline{T}}^{\left({n}_1,\dots, {n}_k\right)},\kern1em k\ge 2,\kern1em {n}_1,\dots, {n}_k\ge 1\Big\} $$

are independent of \( {\Pi}^{(1)}:= {\left({T}^{\left({n}_1\right)}\right)}_{n_1\ge 1} \).

Now, from this consideration, by taking apart the first generation of metastasis, we can rewrite SMO f as follows:

$$ {\displaystyle \begin{array}{ccc}{\mathrm{SMO}}_f(t)& =& \sum \limits_{n_1\ge 1}{\mathbf{1}}_{\left({T}^{\left({n}_1\right)}\le t\right)}f\left({X}_m\left(\right.t-{T}^{\left({n}_1\right)}\right)\Big)\\ {}& & +\sum \limits_{n_1\ge 1}{\mathbf{1}}_{\left({T}^{\left({n}_1\right)}\le t\right)}{\mathrm{SMO}}_{n_1,f}\left(t-{T}^{\left({n}_1\right)}\right)\\ {}& := & I+J,\end{array}} $$
(21)

with

$$ {\mathrm{SMO}}_{n_1,f}(t):= \sum \limits_{k\ge 2}\sum \limits_{n_2,\dots, {n}_k\ge 1}{\mathbf{1}}_{\left({\overline{T}}^{\left({n}_1,\dots, {n}_k\right)}\le t\right)}f\left({X}_m\left(\right.t-{\overline{T}}^{\left({n}_1,\dots, {n}_k\right)}\right)\Big), $$

which are independent of \( {\Pi}^{(1)} \). Note that all the times

$$ {\overline{\Pi}}_{n_1}:= \left\{\right.{\overline{T}}^{\left({n}_1,\dots, {n}_k\right)},\kern1em k\ge 2,\kern1em {n}_2,\dots, {n}_k\ge 1\Big\}, $$

can be defined following (Eq. 11), but with λ m as intensity for all the PPs since we consider all the times from the second generation. Therefore, \( {\left({\mathrm{SMO}}_{n_1,f}\right)}_{n_1\ge 1} \) are all independent. Moreover, the shape of all the \( {\mathrm{SMO}}_{n_1,f} \) is similar to SMO f except that the PPs in the cascade have all λ m for intensity. Hence, all the \( {\mathrm{SMO}}_{n_1,f} \) have the same law as SMO m, f .

Using Proposition A.1 with the Poisson random measure P (1)(du) associated to (N t (1)) t ≥ 0 (with intensity λ p ), it is direct to see that

$$ {\displaystyle \begin{array}{cc}\mathbb{E}\left[I\right]=\mathbb{E}\left[\underset{0}{\overset{t}{\int }}f\left({X}_m\left(t-u\right)\right){P}^{(1)}(du)\right]& =\underset{0}{\overset{t}{\int }}{\lambda}_p(u)f\left({X}_m\left(t-u\right)\right) du\\ {}& ={\lambda}_p\ast f\left({X}_m\right)(t).\end{array}} $$

For the second term, using standard properties of the conditional expectation (especially \( \mathbb{E}\left[X\right]=\mathbb{E}\left[\mathbb{E}\left[X|Y\right]\right] \)), one has

$$ \mathbb{E}\left[ II\right]=\mathbb{E}\left[\right.\sum \limits_{n_1\ge 1}{\mathbf{1}}_{\left({T}^{\left({n}_1\right)}\le t\right)}\mathbb{E}\left[\right.{\mathrm{SMO}}_{n_1,f}\left(t-{T}^{\left({n}_1\right)}\right)\left|\right.{\Pi}^{(1)}\left]\right] $$

with

$$ {\displaystyle \begin{array}{ccc}\mathbb{E}\left[\right.{\mathrm{SMO}}_{f,{n}_1}\left(t-{T}^{\left({n}_1\right)}\right)\left|\right.{\Pi}^{(1)}\left]\right.& =& \mathbb{E}{\left[{\mathrm{SMO}}_{n_1,f}\left(t-u\right)\right]}_{\mid u={T}_{n_1}^{(1)}}\\ {}& =& \mathbb{E}{\left[{\mathrm{SMO}}_{m,f}\left(t-u\right)\right]}_{\mid u={T}^{\left({n}_1\right)}}\\ {}& =& {e}_{m,f}\left(t-{T}^{\left({n}_1\right)}\right),\end{array}} $$
(22)

and then

$$ \sum \limits_{n_1\ge 1}{\mathbf{1}}_{\left({T}^{\left({n}_1\right)}\le t\right)}\mathbb{E}\left[\right.{\mathrm{SMO}}_{n_1,f}\left(t-{T}^{\left({n}_1\right)}\right)\left|\right.{\Pi}^{(1)}\Big]=\underset{0}{\overset{t}{\int }}{e}_{m,f}\left(t-u\right){P}^{(1)}(du). $$

This, together with Proposition A.1, yields

$$ \mathbb{E}\left[ II\right]=\mathbb{E}\left[\right.\underset{0}{\overset{t}{\int }}{e}_{m,f}\left(t-u\right){P}^{(1)}(du)\left]\right.=\underset{0}{\overset{t}{\int }}{\lambda}_p(u){e}_{m,f}\left(t-u\right) du={\lambda}_p\ast {e}_{m,f}(t), $$

which concludes the proof of (Eq. 17). □

1.2 A.2 Proof of Proposition 5.2

Using the same strategy as for (Eq. 18), the proof of (Eq. 15) consists only in proving the following relation:

$$ {v}_f={\lambda}_p\ast \left(\right.f\left({X}_m\right)+{e}_{m,f}{\left)\right.}^2+{\lambda}_p\ast {v}_{m,f}, $$
(23)

with v m, f (t): = var[SMO m, f (t)]. Knowing Proposition 5.1 and the formula of the variance, one can focus on the term \( {e}_f^{(2)}(t):= \mathbb{E}\left[{\mathrm{SMO}}_f^2(t)\right] \). Using (Eq. 21), we have to compute three terms

$$ {e}_f^{(2)}(t)=\mathbb{E}\left[{I}^2\right]+2\mathbb{E}\left[ IJ\right]+\mathbb{E}\left[{J}^2\right]. $$

The Term \( \mathbb{E}\left[{I}^2\right] \)

Reminding that \( I={\int}_0^tf\left({X}_s\left(\right.t-u\right)\left)\right.{P}^{(1)}(du) \), and using Proposition A.1, it is direct that

$$ \mathbb{E}\left[{I}^2\right]=\left(\right.\underset{0}{\overset{t}{\int }}{\lambda}_p(u)f\left({X}_m\left(t-u\right)\right) du\Big){}^2+\underset{0}{\overset{t}{\int }}{\lambda}_p(u){f}^2\left({X}_m\left(t-u\right)\right) du. $$

The Term \( \mathbb{E}\left[ IJ\right] \)

Using standard properties of the conditional expectation, and that for all n 1 ≥ 1

$$ {e}_{m,f}(t)=\mathbb{E}\left[\right.{\mathrm{SMO}}_{n_1,f}(t)\Big], $$

we have using (Eq. 22)

$$ {\displaystyle \begin{array}{c}\mathbb{E}\left[ IJ\right]=\mathbb{E}\left[\sum \limits_{n_1^1,{n}_1^2\ge 1}{\mathbf{1}}_{\left(\right.{T}^{\left({n}_1^1\right)}\le t\Big)}{\mathbf{1}}_{\left(\right.{T}^{\left({n}_1^2\right)}\le t\Big)}f\left({X}_m\left(\right.t-{T}^{\left({n}_1^1\right)}\right)\left)\mathbb{E}\left[\right.{\mathrm{SMO}}_{n_1^2,f}\left(\right.t-{T}^{\left({n}_1^2\right)}\right)\left|\right.{\uppi}^{(1)}]\right]\\ {}\kern2.3em =\mathbb{E}\left[\sum \limits_{n_1^1,{n}_1^2\ge 1}{\mathbf{1}}_{\left(\right.{T}^{\left({n}_1^1\right)}\le t\Big)}{\mathbf{1}}_{\left(\right.{T}^{\left({n}_1^2\right)}\le t\Big)}f\left({X}_m\left(\right.t-{T}^{\left({n}_1^1\right)}\right)\left){e}_{m,f}\left(\right.t-{T}^{\left({n}_1^2\right)}\right)\right].\end{array}} $$

As result, according to Proposition A.1, we have

$$ {\displaystyle \begin{array}{c}\mathbb{E}\left[ IJ\right]=\mathbb{E}\left[\underset{0}{\overset{t}{\int }}f\Big({X}_m\left(t-u\right)\left)\right.{P}^{(1)}(du)\underset{0}{\overset{t}{\int }}{e}_{m,f}\left(t-u\right)\left)\right.{P}^{(1)}(du)\right]\\ {}=\underset{0}{\overset{t}{\int }}{\lambda}_p\left({u}_1\right)f\Big({X}_m\left(t-{u}_1\right)\left)\right.d{u}_1\underset{0}{\overset{t}{\int }}{\lambda}_p\left({u}_2\right){e}_{m,f}\left(t-{u}_2\right)d{u}_2\\ {}+\underset{0}{\overset{t}{\int }}{\lambda}_p(u)f\Big({X}_m\left(t-u\right)\left)\right.{e}_{m,f}\left(t-u\right) du.\end{array}} $$

The Term \( \mathbb{E}\left[{J}^2\right] \)

To compute this term we have to consider two cases

$$ {\displaystyle \begin{array}{c}{J}^2=\sum \limits_{n_1\ge 1}{\mathbf{1}}_{\left({T}^{\left({n}_1\right)}\le t\right)}{\mathrm{SMO}}_{n_1,f}^2\left(t-{T}^{\left({n}_1\right)}\right)\\ {}+\sum \limits_{\begin{array}{c}{n}_1^1,{n}_1^2\ge 1\\ {}{n}_1^1\ne {n}_1^2\end{array}}{\mathbf{1}}_{\left({T}^{\left({n}_1^1\right)}\le t\right)}{\mathbf{1}}_{\left({T}^{\left({n}_1^2\right)}\le t\right)}{\mathrm{SMO}}_{n_1^1,f}\left(t-{T}^{\left({n}_1^1\right)}\right){\mathrm{SMO}}_{n_1^2,f}\left(t-{T}^{\left({n}_1^2\right)}\right)\\ {}:= {J}_1+{J}_2.\end{array}} $$

Following (Eq. 22), but with SMO n, f 2 instead, we have

$$ {\displaystyle \begin{array}{c}\mathbb{E}\left[{J}_1\right]=\mathbb{E}\left[\sum \limits_{n_1\ge 1}{\mathbf{1}}_{\left(\right.{T}^{\left({n}_1^1\right)}\le t\Big)}\mathbb{E}\left[\right.{\mathrm{SMO}}_{n_1,f}^2\left(\right.t-{T}^{\left({n}_1\right)}\Big)\left|\right.{\Pi}^{(1)}]\right]\\ {}=\mathbb{E}\left[\right.\underset{0}{\overset{t}{\int }}{e}_{m,f}^{(2)}\left(t-u\right){P}^{(1)}(du)]\\ {}=\underset{0}{\overset{t}{\int }}{\lambda}_p(u){e}_{m,f}^{(2)}\left(t-u\right) du,\end{array}} $$

where \( {e}_{m,f}^{(2)}(t):= \mathbb{E}\left[{\mathrm{SMO}}_{m,f}^2(t)\right] \). Now using that \( {\mathrm{SMO}}_{n_1^1,f} \) and \( {\mathrm{SMO}}_{n_1^2,f} \) are independent for n 1 1n 1 2, we have, using (Eq. 22) and Proposition A.1 one more time,

$$ {\displaystyle \begin{array}{c}\mathbb{E}\left[{J}_2\right]\\ {}=\mathbb{E}\left[\right.\sum \limits_{n_1^1\ne {n}_1^2}{\mathbf{1}}_{\left({T}^{\left({n}_1^1\right)}\le t\right)}{\mathbf{1}}_{\left({T}^{\left({n}_1^2\right)}\le t\right)}\mathbb{E}\left[\right.{\mathrm{SMO}}_{n_1^1,f}\left(t-{T}^{\left({n}_1^1\right)}\right)\left|\right.{\Pi}^{(1)}]\mathbb{E}\left[\right.{\mathrm{SMO}}_{n_1^2,f}\left(t-{T}^{\left({n}_1^2\right)}\right)\left|\right.{\Pi}^{(1)}]]\\ {}=\mathbb{E}\left[\right.\left(\right.\sum \limits_{n_1\ge 1}{\mathbf{1}}_{\left({T}^{\left({n}_1\right)}\le t\right)}{e}_{m,f}\left(t-{T}^{\left({n}_1\right)}\right)\Big){}^2]-\mathbb{E}\left[\right.\sum \limits_{n_1\ge 1}{\mathbf{1}}_{\left({T}^{\left({n}_1\right)}\le t\right)}{e}_{m,f}^2\left(t-{T}^{\left({n}_1\right)}\right)]\\ {}=\mathbb{E}\left[\right.\left(\right.\underset{0}{\overset{t}{\int }}{e}_{m,f}\left(t-u\right){P}^{(1)}(du)\Big){}^2]-\mathbb{E}\left[\right.\underset{0}{\overset{t}{\int }}{e}_{m,f}^2\left(t-u\right){P}^{(1)}(du)]\\ {}=\left(\right.\underset{0}{\overset{t}{\int }}{\lambda}_p(u){e}_{m,f}\left(t-u\right) du\Big){}^2.\end{array}} $$

Combining the three previous computations, we obtain

$$ {e}_f^{(2)}={\left({\lambda}_p\ast \left(f\left({X}_m\right)+{e}_{m,f}\right)\right)}^2+{\lambda}_p\ast {f}^2\left({X}_m\right)+2{\lambda}_p\ast \left(f\left({X}_m\right){e}_{m,f}\right)+{\lambda}_p\ast {e}_{m,f}^{(2)}. $$
(24)

Considering this equation for λ p = λ m , we obtain as for the expectation a renewal equation for e m, f (2), which yields for all t > 0

$$ {e}_{m,f}^{(2)}(t)\le {C}_1+{C}_2\underset{0}{\overset{t}{\int }}{e}_{m,f}^{(2)}(u) du, $$

and then for all T > 0,

$$ \underset{t\in \left[0,T\right]}{\sup }{e}_{m,f}^{(2)}(t)\le {C}_{1,T}+{C}_{2,T}\underset{t\in \left[0,T\right]}{\sup }{e}_{m,f}^2<+\infty, $$

using Gronwall’s inequality and Proposition 5.1. This proves that \( \mathbb{E}\left[{\mathrm{SMO}}_{m,f}^2(t)\right]<+\infty \) for all t ≥ 0, and then \( \mathbb{E}\left[{\mathrm{SMO}}_f^2(t)\right]<+\infty \) by going back to (Eq. 24). Now, rewriting (Eq. 24), we obtain

$$ {e}_f^{(2)}={e}_f^2+{\lambda}_p\ast {\left(f\left({X}_m\right)+{e}_{m,f}\right)}^2+{\lambda}_p\ast {v}_{m,f}, $$

which is (Eq. 23).

1.3 A.3 Proof of Theorem 5.2

Using that X m (s) ∈ [x m 0, x m ] for all \( s\in {\mathbb{R}}^{+} \), the σ-finiteness and absolute continuity of μ t (for any t ≥ 0) are direct consequences of (Eq. 19). Denoting by \( {\overset{\sim }{\rho}}_t \) its Radon–Nikodým density, Proposition 5.1 and Theorem 5.1 then yield

$$ \underset{x_m^0}{\overset{x_m^{\infty }}{\int }}f(x){\mu}_t(dx)=\underset{x_m^0}{\overset{x_m^{\infty }}{\int }}f(x){\overset{\sim }{\rho}}_t(x) dx=\underset{x_m^0}{\overset{x_m^{\infty }}{\int }}f(x)\rho \left(t,x\right) dx, $$

for all \( f\in C\left(\left[{x}_m^0,{x}_m^{\infty}\right]\right)\cap {L}^{\infty}\left(\left[{x}_m^0,{x}_m^{\infty}\right]\right) \), which concludes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gomez, C., Hartung, N. (2018). Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks. In: von Stechow, L. (eds) Cancer Systems Biology. Methods in Molecular Biology, vol 1711. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7493-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7493-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7492-4

  • Online ISBN: 978-1-4939-7493-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics