Skip to main content

DNA Methylation Analysis of Free-Circulating DNA in Body Fluids

  • Protocol
  • First Online:
DNA Methylation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1708))

Abstract

Circulating cell-free DNA in body fluids is an analyte of great interest in basic and clinical research. The analyses of DNA methylation and hydroxymethylation patterns in body fluids might allow one to determine the certain state of a disease, in particular of cancer. DNA methylation biomarkers in liquid biopsies, i.e. blood plasma samples, may help optimizing personalized therapy for individual patients. DNA methylation analyses of specific loci usually require a bisulfite conversion of the DNA, which requires a sufficiently high amount of DNA at the appropriate concentration. However, free-circulating DNA is generally low concentrated. Therefore, high volumes of body fluids need to be analyzed. This high volume needs to be reduced in order to facilitate the bisulfite conversion. In addition, disease-related free-circulating DNA is even less abundant than normal DNA in the total amount of free-circulating DNA. Accordingly, analytical and pre-analytical methods are needed, which permit an accurate and sensitive quantification of single methylated DNA copies in the presence of unmethylated DNA in abundance.

This protocol describes two methods for DNA enrichment from body fluids: DNA extraction by means of magnetic beads and polymer-mediated enrichment of DNA. Subsequent bisulfite conversion is achieved by means of a high-speed conversion protocol. Adaptions of the workflow required for the analysis of hydroxymethylation via oxidation 5-hydroxymethylcytosines to 5-formylcytosines prior to the bisulfite conversion are introduced. A quantitative real-time PCR based on the methylation-specific and HeavyMethyl PCR methodologies is introduced. This qPCR assay allows for an accurate and sensitive quantification of single copies of the DNA methylation biomarkers SHOX2 and SEPT9 in blood plasma. Specific issues regarding the analysis of body fluids and respective trouble shooting approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Guibert S, Weber M (2013) Functions of DNA methylation and hydroxymethylation in mammalian development. Curr Top Dev Biol 104:47–83

    Article  CAS  PubMed  Google Scholar 

  2. Sarkar S, Horn G, Moulton K et al (2013) Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci 14:21087–21113

    Article  PubMed  PubMed Central  Google Scholar 

  3. Church TR, Wandell M, Lofton-Day C et al (2014) Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 63:317–325

    Article  CAS  PubMed  Google Scholar 

  4. deVos T, Tetzner R, Model F et al (2009) Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 55:1337–1346

    Article  CAS  PubMed  Google Scholar 

  5. Kneip C, Schmidt B, Seegebarth A et al (2011) SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol 6:1632–1638

    Article  PubMed  Google Scholar 

  6. Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Darst RP, Pardo CE, Ai L et al (2010) Bisulfite sequencing of DNA. Curr Protoc Mol Biol 15 Chapter 7:Unit 7.9.1–17

    Google Scholar 

  8. Millar DS, Warnecke PM, Melki JR et al (2002) Methylation sequencing from limiting DNA: embryonic, fixed, and microdissected cells. Methods 27:108–113

    Article  CAS  PubMed  Google Scholar 

  9. Boyd VL, Zon G (2004) Bisulfite conversion of genomic DNA for methylation analysis: protocol simplification with higher recovery applicable to limited samples and increased throughput. Anal Biochem 326:278–280

    Article  CAS  PubMed  Google Scholar 

  10. Hayatsu H, Negishi K, Shiraishi M (2004) Accelerated bisulfite-deamination of cytosine in the genomic sequencing procedure for DNA methylation analysis. Nucleic Acids Symp Ser 48:261–262

    Article  Google Scholar 

  11. Hayatsu H, Shiraishi M, Negishi K (2008) Bisulfite modification for analysis of DNA methylation. Curr Protoc Nucleic Acid Chem Chapter 6:Unit 6.10

    Google Scholar 

  12. Shiraishi M, Hayatsu H (2004) High-speed conversion of cytosine to uracil in bisulfite genomic sequencing analysis of DNA methylation. DNA Res 11:409–415

    Article  CAS  PubMed  Google Scholar 

  13. Holmes EE, Jung M, Meller S et al (2014) Performance evaluation of kits for bisulfite-conversion of DNA from tissues, cell lines, FFPE tissues, aspirates, lavages, effusions, plasma, serum, and urine. PLoS One 9:e93933

    Article  PubMed  PubMed Central  Google Scholar 

  14. Weisenberger DJ, Trinh BN, Campan M et al (2008) DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res 36:4689–4698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ostrow KL, Hoque MO, Loyo M et al (2010) Molecular analysis of plasma DNA for the early detection of lung cancer by quantitative methylation-specific PCR. Clin Cancer Res 16:3463–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cottrell SE, Distler J, Goodman NS et al (2004) A real-time PCR assay for DNA-methylation using methylation-specific blockers. Nucleic Acids Res 32:e10

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dietrich D, Hasinger O, Bañez LL et al (2013) Development and clinical validation of a real-time PCR assay for PITX2 DNA methylation to predict prostate-specific antigen recurrence in prostate cancer patients following radical prostatectomy. J Mol Diagn 15:270–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dietrich D, Jung M, Puetzer S et al (2013) Diagnostic and prognostic value of SHOX2 and SEPT9 DNA methylation and cytology in benign, paramalignant and malignant pleural effusions. PLoS One 8:e84225

    Article  PubMed  PubMed Central  Google Scholar 

  19. Herman JG, Graff JR, Myöhänen S et al (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93:9821–9826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raizis AM, Schmitt F, Jost JP (1995) A bisulfite method of 5-methylcytosine mapping that minimizes template degradation. Anal Biochem 226:161–166

    Article  CAS  PubMed  Google Scholar 

  21. Grunau C, Clark SJ, Rosenthal A (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 29:e65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanaka K, Okamoto A (2007) Degradation of DNA by bisulfite treatment. Bioorg Med Chem Lett 17:1912–1915

    Article  CAS  PubMed  Google Scholar 

  23. Hayatsu H (2008) The bisulfite genomic sequencing used in the analysis of epigenetic states, a technique in the emerging environmental genotoxicology research. Mutat Res 659:77–82

    Article  CAS  PubMed  Google Scholar 

  24. Jin L, Wang W, Hu D (2013) The conversion of protonated cytosine-SO3(−) to uracil-SO3(−): insights into the novel induced hydrolytic deamination through bisulfite catalysis. Phys Chem Chem Phys 15:9034–9042

    Article  CAS  PubMed  Google Scholar 

  25. Genereux DP, Johnson WC, Burden AF et al (2008) Errors in the bisulfite conversion of DNA: modulating inappropriate- and failed-conversion frequencies. Nucleic Acids Res 36:e150

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dietrich D, Hasinger O, Liebenberg V et al (2012) DNA methylation of the homeobox genes PITX2 and SHOX2 predicts outcome in non-small-cell lung cancer patients. Diagn Mol Pathol 21:93–104

    Article  CAS  PubMed  Google Scholar 

  27. Dietrich D, Kneip C, Raji O et al (2012) Performance evaluation of the DNA methylation biomarker SHOX2 for the aid in diagnosis of lung cancer based on the analysis of bronchial aspirates. Int J Oncol 40:825–832

    CAS  PubMed  Google Scholar 

  28. Vu NT, Chaturvedi AK, Canfield DV (1999) Genotyping for DQA1 and PM loci in urine using PCR-based amplification: effects of sample volume, storage temperature, preservatives, and aging on DNA extraction and typing. Forensic Sci Int 102:23–34

    Article  CAS  PubMed  Google Scholar 

  29. van der Hel OL, van der Luijt RB, Bueno de Mesquita HB (2002) Quality and quantity of DNA isolated from frozen urine in population-based research. Anal Biochem 304:206–211

    Article  PubMed  Google Scholar 

  30. Cannas A, Kalunga G, Green C et al (2009) Implications of storing urinary DNA from different populations for molecular analyses. PLoS One 4:e6985

    Article  PubMed  PubMed Central  Google Scholar 

  31. Booth MJ, Ost TW, Beraldi D et al (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8:1841–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Booth MJ, Balasubramanian S (2014) Methods for detection of nucleotide modification. US Patent 14/235,707, 26 June 2014

    Google Scholar 

Download references

Competing Interests

Dimo Dietrich has been an employee and is a stockholder of Epigenomics AG, a company that aims to commercialize the DNA methylation biomarkers SEPT9 and SHOX2. Dimo Dietrich is coinventor and owns patents on methylation biomarkers and related technologies. These patents are commercially exploited by Epigenomics AG. Dimo Dietrich receives inventor’s compensation from Epigenomics AG. Dimo Dietrich is a consultant for AJ Innuscreen GmbH (Berlin, Germany), a 100% daughter company of Analytik Jena AG (Jena, Germany), and receives royalties from the sale of innuCONVERT Bisulfite Kits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimo Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jung, M., Kristiansen, G., Dietrich, D. (2018). DNA Methylation Analysis of Free-Circulating DNA in Body Fluids. In: Tost, J. (eds) DNA Methylation Protocols. Methods in Molecular Biology, vol 1708. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7481-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7481-8_32

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7479-5

  • Online ISBN: 978-1-4939-7481-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics