Skip to main content

Comprehensive Whole DNA Methylome Analysis by Integrating MeDIP-seq and MRE-seq

  • Protocol
  • First Online:
DNA Methylation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1708))

Abstract

Understanding the role of DNA methylation often requires accurate assessment and comparison of these modifications in a genome-wide fashion. Sequencing-based DNA methylation profiling provides an unprecedented opportunity to map and compare complete DNA CpG methylomes. These include whole genome bisulfite sequencing (WGBS), Reduced-Representation Bisulfite-Sequencing (RRBS), and enrichment-based methods such as MeDIP-seq, MBD-seq, and MRE-seq. An investigator needs a method that is flexible with the quantity of input DNA, provides the appropriate balance among genomic CpG coverage, resolution, quantitative accuracy, and cost, and comes with robust bioinformatics software for analyzing the data. In this chapter, we describe four protocols that combine state-of-the-art experimental strategies with state-of-the-art computational algorithms to achieve this goal. We first introduce two experimental methods that are complementary to each other. MeDIP-seq, or methylation-dependent immunoprecipitation followed by sequencing, uses an anti-methylcytidine antibody to enrich for methylated DNA fragments, and uses massively parallel sequencing to reveal identity of enriched DNA. MRE-seq, or methylation-sensitive restriction enzyme digestion followed by sequencing, relies on a collection of restriction enzymes that recognize CpG containing sequence motifs, but only cut when the CpG is unmethylated. Digested DNA fragments enrich for unmethylated CpGs at their ends, and these CpGs are revealed by massively parallel sequencing. The two computational methods both implement advanced statistical algorithms that integrate MeDIP-seq and MRE-seq data. M&M is a statistical framework to detect differentially methylated regions between two samples. methylCRF is a machine learning framework that predicts CpG methylation levels at single CpG resolution, thus raising the resolution and coverage of MeDIP-seq and MRE-seq to a comparable level of WGBS, but only incurring a cost of less than 5% of WGBS. Together these methods form an effective, robust, and affordable platform for the investigation of genome-wide DNA methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  2. Ziller MJ, Muller F, Liao J et al (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7:e1002389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lister R, Pelizzola M, Kida YS et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ramsahoye BH, Biniszkiewicz D, Lyko F et al (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97:5237–5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yan J, Zierath JR, Barres R (2011) Evidence for non-CpG methylation in mammals. Exp Cell Res 317:2555–2561

    Article  CAS  PubMed  Google Scholar 

  6. Aran D, Sabato S, Hellman A (2013) DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol 14:R21

    Article  PubMed  PubMed Central  Google Scholar 

  7. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  CAS  PubMed  Google Scholar 

  8. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  9. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220

    Article  CAS  PubMed  Google Scholar 

  10. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  CAS  PubMed  Google Scholar 

  11. Bergman Y, Cedar H (2013) DNA methylation dynamics in health and disease. Nat Struct Mol Biol 20:274–281

    Article  CAS  PubMed  Google Scholar 

  12. Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hon GC, Rajagopal N, Shen Y et al (2013) Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45:1198–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stadler MB, Murr R, Burger L et al (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–495

    CAS  PubMed  Google Scholar 

  15. Zhang B, Zhou Y, Lin N et al (2013) Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Res 23:1522–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ziller MJ, Gu H, Muller F et al (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500:477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schlesinger F, Smith AD, Gingeras TR et al (2013) De novo DNA demethylation and noncoding transcription define active intergenic regulatory elements. Genome Res 23:1601–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie M, Hong C, Zhang B et al (2013) DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat Genet 45:836–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Laurent L, Wong E, Li G et al (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20:320–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meissner A, Gnirke A, Bell GW et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meissner A, Mikkelsen TS, Gu H et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  CAS  PubMed  Google Scholar 

  25. Maunakea AK, Nagarajan RP, Bilenky M et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Serre D, Lee BH, Ting AH (2010) MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38:391–399

    Article  CAS  PubMed  Google Scholar 

  27. Kriukiene E, Labrie V, Khare T et al (2013) DNA unmethylome profiling by covalent capture of CpG sites. Nat Commun 4:2190

    Article  PubMed  Google Scholar 

  28. Harris RA, Wang T, Coarfa C et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28:1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bock C, Tomazou EM, Brinkman AB et al (2010) Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 28:1106–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang Y, Pastor WA, Shen Y et al (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5:e8888

    Article  PubMed  PubMed Central  Google Scholar 

  31. Booth MJ, Branco MR, Ficz G et al (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336:934–937

    Article  CAS  PubMed  Google Scholar 

  32. Yu M, Hon GC, Szulwach KE et al (2012) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7:2159–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taiwo O, Wilson GA, Morris T et al (2012) Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc 7:617–636

    Article  CAS  PubMed  Google Scholar 

  34. Nair SS, Coolen MW, Stirzaker C et al (2011) Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics 6:34–44

    Article  CAS  PubMed  Google Scholar 

  35. Pelizzola M, Koga Y, Urban AE et al (2008) MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Res 18:1652–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stevens M, Cheng JB, Li D et al (2013) Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods. Genome Res 23:1541–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lafferty J, McCallum A, Pereira F (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. Departmental Papers CIS-159

    Google Scholar 

  38. Wallach H (2004) Conditional random fields: an introduction. Technical report MS-CIS-04-21 Department of computer and information science, University of Pennsylvania

    Google Scholar 

  39. Zhou X, Li D, Lowdon RF et al (2014) methylC track: visual integration of single-base resolution DNA methylation data on the WashU EpiGenome browser. Bioinformatics 30:2206–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou X, Lowdon RF, Li D et al (2013) Exploring long-range genome interactions using the WashU Epigenome browser. Nat Methods 10:375–376

    Article  CAS  PubMed  Google Scholar 

  41. Zhou X, Wang T (2012) Using the Wash U Epigenome Browser to examine genome-wide sequencing data. Curr Protoc Bioinformatics Chapter 10:Unit10 10

    PubMed  Google Scholar 

  42. Zhou X, Maricque B, Xie M et al (2011) The human epigenome browser at Washington university. Nat Methods 8:989–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Quail MA, Kozarewa I, Smith F et al (2008) A large genome center's improvements to the Illumina sequencing system. Nat Methods 5:1005–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Joseph F. Costello, Ravi Nagarajan, Chibo Hong for developing the experimental protocols described in this chapter. We thank Michael Stevens for developing methylCRF. We thank Nan Lin, Yan Zhou, Boxue Zhang for developing M&M. We thank members of the Wang laboratory for testing and improving various parts of the methods. This work was supported by NIH grant U01ES017154 (T.W.), R01HG007354 (T.W.), NIDA’s R25 program DA027995 (B.Z.), and American Cancer Society grant RSG-14-049-01-DMC (T.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xing, X., Zhang, B., Li, D., Wang, T. (2018). Comprehensive Whole DNA Methylome Analysis by Integrating MeDIP-seq and MRE-seq. In: Tost, J. (eds) DNA Methylation Protocols. Methods in Molecular Biology, vol 1708. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7481-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7481-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7479-5

  • Online ISBN: 978-1-4939-7481-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics