Skip to main content

Fluorescent-Linked Enzyme Chemoproteomic Strategy (FLECS) for Identifying HSP70 Inhibitors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

Activation of the heat shock response, and in particular upregulation of stress-inducible Hsp70, herein referred to as Hsp70i, in newly transformed cells, appears to protect against protein damaging stimuli, induction of premature oncogene-induced terminal senescence (OIS), and apoptosis, thereby enabling tumor initiation and progression to an aggressive phenotype. Expressed at very low or undetectable levels in normal tissue, the cytoprotective effects of Hsp70i appear to be mediated through its activity as a molecular chaperone allowing proper folding of mutated proteins, and by blocking cell signaling pathways that regulate OIS and apoptosis. Identification of small-molecule inhibitors selective for Hsp70i could provide new therapeutic tools for cancer treatment. However, identification of selective inhibitors of Hsp70i has proven challenging largely because of the affinity of the protein for ATP. Additionally, its chaperone functions do not lend the protein amenable to traditional enzymatic high-throughput screens. Here, we describe the use of fluorescence-linked enzyme chemoproteomic strategy (FLECS) to identify Hsp70i inhibitors. The FLECS assay is a simple binding assay that enables proteins tagged with fluorophors to be rapidly and quantitative screened against small-molecule libraries. We show several case history examples of the methodology that led to the discovery of the Fatty acid synthase inhibitor, FASNALL, the DAPK3 inhibitor HS38, and HS72, an allosteric inhibitor selective for Hsp70i.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710

    Article  CAS  PubMed  Google Scholar 

  2. Evans CG, Chang L, Gestwicki JE (2010) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem 53:4585–4602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hunt C, Morimoto RI (1985) Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci U S A 82:6455–6459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dix DJ, Allen JW, Collins BW et al (1996) Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci U S A 93:3264–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wacker JL, Huang SY, Steele AD et al (2009) Loss of Hsp70 exacerbates pathogenesis but not levels of fibrillar aggregates in a mouse model of Huntington's disease. J Neurosci 29:9104–9114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1:23–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ramos C (2011) Molecular chaperones and protein quality control. Protein Pept Lett 18:100

    Article  CAS  PubMed  Google Scholar 

  8. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Powers MV, Jones K, Barillari C, Westwood I, van Montfort RL, Workman P (2010) Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone? Cell Cycle 9:1542–1550

    Article  CAS  PubMed  Google Scholar 

  10. Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM (2007) Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol Cell 26:27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Powers MV, Clarke PA, Workman P (2009) Death by chaperone: HSP90, HSP70 or both? Cell Cycle 8:518–526

    Article  CAS  PubMed  Google Scholar 

  12. Massey AJ (2010) ATPases as drug targets: insights from heat shock proteins 70 and 90. J Med Chem 53:7280–7286

    Article  CAS  PubMed  Google Scholar 

  13. Qi R, Sarbeng EB, Liu Q et al (2013) Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nat Struct Mol Biol 20(7):900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fewell SW, Day BW, Brodsky JL (2001) Identification of an inhibitor of hsc70-mediated protein translocation and ATP hydrolysis. J Biol Chem 276:910–914

    Article  CAS  PubMed  Google Scholar 

  15. Braunstein MJ, Scott SS, Scott CM et al (2011) Antimyeloma effects of the heat shock protein 70 molecular chaperone inhibitor MAL3-101. J Oncol 2011:232037

    Article  PubMed  PubMed Central  Google Scholar 

  16. Propper DJ, Braybrooke JP, Taylor DJ et al (1999) Phase I trial of the selective mitochondrial toxin MKT077 in chemo-resistant solid tumours. Ann Oncol 10:923–927

    Article  CAS  PubMed  Google Scholar 

  17. Britten CD, Rowinsky EK, Baker SD et al (2000) A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077. Clin Cancer Res 6:42–49

    CAS  PubMed  Google Scholar 

  18. Leu JI, Pimkina J, Frank A, Murphy ME, George DL (2009) A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 36:15–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taguwa S, Frydman J (2015) The significance of Hsp70 subnetwork for Dengue virus lifecycle. Uirusu 65:179–186

    Article  PubMed  Google Scholar 

  20. Howe MK, Bodoor K, Carlson DA et al (2014) Identification of an allosteric small-molecule inhibitor selective for the inducible form of heat shock protein 70. Chem Biol 21:1648–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fadden P, Huang KH, Veal JM et al (2010) Application of chemoproteomics to drug discovery: identification of a clinical candidate targeting hsp90. Chem Biol 17:686–694

    Article  CAS  PubMed  Google Scholar 

  22. Haystead TA (2006) The purinome, a complex mix of drug and toxicity targets. Curr Top Med Chem 6:1117–1127

    Article  CAS  PubMed  Google Scholar 

  23. Graves PR, Kwiek JJ, Fadden P et al (2002) Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol Pharmacol 62:1364–1372

    Article  CAS  PubMed  Google Scholar 

  24. Alwarawrah Y, Hughes P, Loiselle D et al (2016) Fasnall, a selective FASN inhibitor, shows potent anti-tumor activity in the MMTV-Neu model of HER2(+) breast cancer. Cell Chem Biol 23:678–688

    Article  CAS  PubMed  Google Scholar 

  25. Carlson DA, Franke AS, Weitzel DH et al (2013) Fluorescence linked enzyme chemoproteomic strategy for discovery of a potent and selective DAPK1 and ZIPK inhibitor. ACS Chem Biol 8:2715–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeng XC, Bhasin S, Wu X, Lee JG, Maffi S, Nichols CJ, Lee KJ, Taylor JP, Greene LE, Eisenberg E (2004) Hsp70 dynamics in vivo: effect of heat shock and protein aggregation. J Cell Sci 117:4991–5000

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01-AI089526-04 to T.A.J.H. and a Department of Defense Transformative Vision Award to T.A.J.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. J. Haystead .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Haystead, T.A.J. (2018). Fluorescent-Linked Enzyme Chemoproteomic Strategy (FLECS) for Identifying HSP70 Inhibitors. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics