Skip to main content

Measurement of Chaperone-Mediated Effects on Polyglutamine Protein Aggregation by the Filter Trap Assay

  • Protocol
  • First Online:
Book cover Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

The formation of aggregates by polyglutamine-containing (polyQ) proteins in neurons is a key to the pathogenesis of several progressive neurodegenerative diseases such as Huntington’s disease (HD) spinocerebellar ataxias (SCAs), and spinal and bulbar muscular atrophy (SBMA). In order to study whether the members of the heat shock protein (HSP) families, by virtue of their molecular chaperone activity, can inhibit the formation of polyQ aggregates, we developed a cell culture model expressing the GFP tagged fragment of exon1 of the huntingtin gene with an expanded polyQ chain and tetracycline inducible chaperones. Expression of mutated Huntington’s protein leads to the formation of 2% SDS insoluble high molecular weight polyQ aggregates that are retarded on a cellulose acetate membrane in the so-called filter trap assay (FTA). This chapter explains in detail the protocols of the FTA and how it can be a useful tool to study the effect of HSPs or their functional mutants on aggregation of polyglutamine proteins. Moreover, the assay is useful to investigate how externally added polyQ peptides can act as nucleation seeds for internally expressed polyQ proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  2. Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247

    Article  CAS  PubMed  Google Scholar 

  3. Schilling G, Klevytska A, Tebbenkamp ATN et al (2007) Characterization of huntingtin pathologic fragments in human Huntington disease, transgenic mice, and cell models. J Neuropathol Exp Neurol 66:313–320

    Article  CAS  PubMed  Google Scholar 

  4. Gusella JF, MacDonald ME (2000) Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat Rev Neurosci 1:109–115

    Article  CAS  PubMed  Google Scholar 

  5. Neef DW, Turski ML, Thiele DJ (2010) Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol 8:e1000291

    Article  PubMed  PubMed Central  Google Scholar 

  6. Warrick JM, Chan HY, Gray-Board GL et al (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428

    Article  CAS  PubMed  Google Scholar 

  7. Kampinga HH, Bergink S (2016) Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol 15:748–759

    Article  CAS  PubMed  Google Scholar 

  8. Labbadia J, Morimoto RI (2013) Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 38:378–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kakkar V, Meister-Broekema M, Minoia M et al (2014) Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. Dis Model Mech 7:421–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kakkar V, Prins L, Kampinga H (2012) DNAJ proteins and protein aggregation diseases. Curr Top Med Chem 12:1873–4294. Review

    Google Scholar 

  11. Vos MJ, Zijlstra MP, Kanon B et al (2010) HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 19:4677–4693

    Article  CAS  PubMed  Google Scholar 

  12. Hageman J, Rujano MA, van Waarde MAWH et al (2010) A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell 37:355–369

    Article  CAS  PubMed  Google Scholar 

  13. Scherzinger E, Lurz R, Turmaine M et al (1997) Huntingtin encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90:549–558

    Article  CAS  PubMed  Google Scholar 

  14. Bailey CK, Andriola IFM, Kampinga HH et al (2002) Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum Mol Genet 11:515–523

    Article  CAS  PubMed  Google Scholar 

  15. Carra S, Sivilotti M, Zobel ATC et al (2005) HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet 14:1659–1669

    Article  CAS  PubMed  Google Scholar 

  16. Scherzinger E, Sittler A, Schweiger K et al (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci U S A 96:4604–4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hageman J, Kampinga HH (2009) Computational analysis of the human HSPH/HSPA/DNAJ family and cloning of a human HSPH/HSPA/DNAJ expression library. Cell Stress Chaperones 14:1–21

    Article  CAS  PubMed  Google Scholar 

  18. Rujano MA, Kampinga HH, Salomons FA (2007) Modulation of polyglutamine inclusion formation by the Hsp70 chaperone machine. Exp Cell Res 313:3568–3578

    Article  CAS  PubMed  Google Scholar 

  19. Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11:301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ren P-H, Lauckner JE, Kachirskaia I et al (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11:219–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kakkar V, Månsson C, de Mattos EP et al (2016) The S/T-rich motif in the DNAJB6 chaperone delays polyglutamine aggregation and the onset of disease in a mouse model. Mol Cell 62:272–283

    Article  CAS  Google Scholar 

  22. Fujikake N, Nagai Y, Popiel HA et al (2008) Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 283:26188–26197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vos MJ, Carra S, Kanon B et al (2016) Specific protein homeostatic functions of small heat-shock proteins increase lifespan. Aging Cell 15:217–226

    Article  CAS  PubMed  Google Scholar 

  24. Tebbenkamp ATN, Borchelt DR (2009) Neuroproteomics. Protein Aggregate Characterization in Models of Neurodegenerative Disease 566:85–91

    Google Scholar 

  25. Peelaerts W, Bousset L, Van der Perren A et al (2015) α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–344

    Article  CAS  PubMed  Google Scholar 

  26. Bousset L, Brundin P, Böckmann A et al (2016) An efficient procedure for removal and inactivation of alpha-synuclein assemblies from laboratory materials. J Parkinsons Dis 6:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Senter Novem (IOP-IGE07004) and a Stimulation Grant from the Nederlandse Hersenstichting (project 15F07(2)-58) awarded to H.H.K. The authors wish to thank Dr. M.A. Rujano and Dr. J. Hageman for their contribution to the introduction of the Filter Trap Assay in our lab. The corrections and suggestions after careful reading of the manuscript by E. Preusser de Mattos are very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harm H. Kampinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

van Waarde-Verhagen, M.A.W.H., Kampinga, H.H. (2018). Measurement of Chaperone-Mediated Effects on Polyglutamine Protein Aggregation by the Filter Trap Assay. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics