Skip to main content

Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

The heat shock response (HSR) is a cellular mechanism for counteracting acute proteotoxic stress. In eukaryotes, transcriptional activation of the HSR is regulated by heat shock factor 1 (HSF1). Activation of HSF1 induces the expression of heat shock proteins (HSPs) that function as molecular chaperones to fold and maintain the three-dimensional structure of misfolded proteins. The regulation of the degree and duration of the HSR is controlled by multiple biochemical mechanisms that include posttranslational modification of HSF1 and numerous protein-protein interactions. In this chapter, we describe a method to evaluate the activation and deactivation of the HSR at the transcriptional level using a short half-life luciferase reporter assay. This assay can be used to further characterize the HSR or as a screen for small-molecule inducers, amplifiers, or repressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vihervaara A, Sistonen L (2014) HSF1 at a glance. J Cell Sci 127(Pt 2):261–266

    Article  CAS  PubMed  Google Scholar 

  2. Dayalan Naidu S, Dinkova-Kostova AT (2017) Regulation of the mammalian heat shock factor 1. FEBS J 284(11):1606–1627

    Article  CAS  PubMed  Google Scholar 

  3. Brown SA, Kingston RE (1997) Disruption of downstream chromatin directed by a transcriptional activator. Genes Dev 11(23):3116–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bunch H et al (2014) TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nat Struct Mol Biol 21(10):876–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94(4):471–480

    Article  CAS  PubMed  Google Scholar 

  6. Guettouche T, Boellmann F, Lane WS, Voellmy R (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xu YM, Huang DY, Chiu JF, Lau AT (2012) Post-translational modification of human heat shock factors and their functions: a recent update by proteomic approach. J Proteome Res 11(5):2625–2634

    Article  CAS  PubMed  Google Scholar 

  8. Mendillo ML et al (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150(3):549–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging—a mini-review. Gerontology 55(5):550–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parsian AJ et al (2000) The human Hsp70B gene at the HSPA7 locus of chromosome 1 is transcribed but non-functional. Biochim Biophys Acta 1494(1–2):201–205

    Article  CAS  PubMed  Google Scholar 

  11. Younis I et al (2010) Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol Cell Biol 30(7):1718–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim D, Kim SH, Li GC (1999) Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochem Biophys Res Commun 254(1):264–268

    Article  CAS  PubMed  Google Scholar 

  13. Murshid A et al (2010) Protein kinase A binds and activates heat shock factor 1. PLoS One 5(11):e13830

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gibson DG et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  15. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73

    Article  CAS  PubMed  Google Scholar 

  16. Galam L et al (2007) High-throughput assay for the identification of Hsp90 inhibitors based on Hsp90-dependent refolding of firefly luciferase. Bioorg Med Chem 15(5):1939–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beebe K et al (2013) Posttranslational modification and conformational state of heat shock protein 90 differentially affect binding of chemically diverse small molecule inhibitors. Oncotarget 4(7):1065–1074

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mowad Endowment for New Discoveries at Geisinger Health Systems, the JSPS Research Fellowship for Japanese Biomedical and Behavioral Research at NIH, and the Intramural Research Program at the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Prince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kijima, T., Eguchi, T., Neckers, L., Prince, T.L. (2018). Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics