Skip to main content

GPCR Homology Model Generation for Lead Optimization

  • Protocol
  • First Online:
Computational Methods for GPCR Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1705))

Abstract

The vast increase of recently solved GPCR X-ray structures forms the basis for GPCR homology modeling to atomistic accuracy. Nowadays, homology models can be employed for GPCR-ligand optimization and have been reported as invaluable tools for drug design in the last few years. Elucidation of the complex GPCR pharmacology and the associated GPCR conformations made clear that different homology models have to be constructed for different activation states of the GPCRs. Therefore, templates have to be chosen accordingly to their sequence homology as well as to their activation state. The subsequent ligand placement is nontrivial, as some recent X-ray structures show very unusual ligand binding sites and solvent involvement, expanding the space of the putative ligand binding site from the generic retinal binding pocket to the whole receptor. In the present study, a workflow is presented starting from the selection of the target sequence, guiding through the GPCR modeling process, and finishing with ligand placement and pose validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745. https://doi.org/10.1126/science.289.5480.739

    Article  CAS  PubMed  Google Scholar 

  2. Kimura SR, Tebben AJ, Langley DR (2008) Expanding GPCR homology model binding sites via a balloon potential: a molecular dynamics refinement approach. Proteins: Struct Funct Bioinform 71(4):1919–1929. https://doi.org/10.1002/prot.21906

    Article  CAS  Google Scholar 

  3. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein coupled receptor. Science 318(5854):1258–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387. Doi:nature06325 [pii];10.1038/nature06325 [doi]

    Article  CAS  PubMed  Google Scholar 

  5. Michino M, Abola E, participants GD, Brooks CL, Dixon JS, Moult J, Stevens RC (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR dock 2008. Nat Rev Drug Discov 8(6):455–463. doi:http://www.nature.com/nrd/journal/v8/n6/suppinfo/nrd2877_S1.html

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kufareva I, Katritch V, Stevens Raymond C, Abagyan R (2014) Advances in GPCR modeling evaluated by the GPCR dock 2013 assessment: meeting new challenges. Structure 22(8):1120–1139. https://doi.org/10.1016/j.str.2014.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kufareva I, Rueda M, Katritch V, Stevens Raymond C, Abagyan R (2011) Status of GPCR modeling and docking as reflected by community-wide GPCR dock 2010 assessment. Structure 19(8):1108–1126. https://doi.org/10.1016/j.str.2011.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Costanzi S, Skorski M, Deplano A, Habermehl B, Mendoza M, Wang K, Biederman M, Dawson J, Gao J (2016) Homology modeling of a class A GPCR in the inactive conformation: a quantitative analysis of the correlation between model/template sequence identity and model accuracy. J Mol Graph Model 70:140–152. https://doi.org/10.1016/j.jmgm.2016.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gleeson MP (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 51(4):817–834. https://doi.org/10.1021/jm701122q

    Article  CAS  PubMed  Google Scholar 

  10. Costanzi S, Tikhonova IG, Harden TK, Jacobson KA (2009) Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands. J Comput Aided Mol Des 23(11):747–754. https://doi.org/10.1007/s10822-008-9218-3

    Article  CAS  PubMed  Google Scholar 

  11. Levoin N, Calmels T, Poupardin-Olivier O, Labeeuw O, Danvy D, Robert P, Berrebi-Bertrand I, Ganellin CR, Schunack W, Stark H, Capet M (2008) Refined docking as a valuable tool for lead optimization: application to histamine H3 receptor antagonists. Arch Pharm 341(10):610–623. https://doi.org/10.1002/ardp.200800042

    Article  CAS  Google Scholar 

  12. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tautermann CS, Pautsch A (2011) The Implication of the First Agonist Bound Activated GPCR X-ray Structure on GPCR in Silico Modeling. ACS Med Chem Lett 2(6):414-418. https://doi.org/10.1021/ml100247s

    Google Scholar 

  14. Dosa PI, Amin EA (2016) Tactical approaches to interconverting GPCR agonists and antagonists. J Med Chem 59(3):810–840. https://doi.org/10.1021/acs.jmedchem.5b00982

    Article  CAS  PubMed  Google Scholar 

  15. Köppen H (2009) Virtual screening - what does it give us? Curr Opin Drug Discov Dev 12(3):397–407

    Google Scholar 

  16. Beuming T, Sherman W (2012) Current assessment of docking into GPCR crystal structures and homology models: successes, challenges, and guidelines. J Chem Inf Model 52(12):3263–3277. https://doi.org/10.1021/ci300411b

    Article  CAS  PubMed  Google Scholar 

  17. Bortolato A, Tehan BG, Bodnarchuk MS, Essex JW, Mason JS (2013) Water network perturbation in ligand binding: adenosine A2A antagonists as a case study. J Chem Inf Model 53(7):1700–1713. https://doi.org/10.1021/ci4001458

    Article  CAS  PubMed  Google Scholar 

  18. Storer RI, Brennan PE, Brown AD, Bungay PJ, Conlon KM, Corbett MS, DePianta RP, Fish PV, Heifetz A, Ho DKH, Jessiman AS, McMurray G, de Oliveira CAF, Roberts LR, Root JA, Shanmugasundaram V, Shapiro MJ, Skerten M, Westbrook D, Wheeler S, Whitlock GA, Wright J (2014) Multiparameter optimization in CNS drug discovery: Design of Pyrimido[4,5-d]azepines as potent 5-Hydroxytryptamine 2C (5-HT2C) receptor agonists with exquisite functional selectivity over 5-HT2A and 5-HT2B receptors. J Med Chem 57(12):5258–5269. https://doi.org/10.1021/jm5003292

    Article  CAS  PubMed  Google Scholar 

  19. Heifetz A, Storer RI, McMurray G, James T, Morao I, Aldeghi M, Bodkin MJ, Biggin PC (2016) Application of an integrated GPCR SAR-modeling platform to explain the activation selectivity of human 5-HT2C over 5-HT2B. ACS Chem Biol 11(5):1372–1382. https://doi.org/10.1021/acschembio.5b01045

    Article  CAS  PubMed  Google Scholar 

  20. Heifetz A, Morris GB, Biggin PC, Barker O, Fryatt T, Bentley J, Hallett D, Manikowski D, Pal S, Reifegerste R, Slack M, Law R (2012) Study of human orexin-1 and -2 G-protein-coupled receptors with novel and published antagonists by modeling, molecular dynamics simulations, and site-directed mutagenesis. Biochemistry 51(15):3178–3197. https://doi.org/10.1021/bi300136h

    Article  CAS  PubMed  Google Scholar 

  21. Heifetz A, Barker O, Morris GB, Law RJ, Slack M, Biggin PC (2013) Toward an understanding of agonist binding to human Orexin-1 and Orexin-2 receptors with G-protein-coupled receptor modeling and site-directed mutagenesis. Biochemistry 52(46):8246–8260. https://doi.org/10.1021/bi401119m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494(7436):185–194

    Article  CAS  PubMed  Google Scholar 

  23. Tautermann CS (2011) The use of G-protein coupled receptor models in lead optimization. Future Med Chem 3(6):709–721. https://doi.org/10.4155/fmc.11.24

    Article  CAS  PubMed  Google Scholar 

  24. Heifetz A, James T, Morao I, Bodkin MJ, Biggin PC (2016) Guiding lead optimization with GPCR structure modeling and molecular dynamics. Curr Opin Pharmacol 30:14–21. https://doi.org/10.1016/j.coph.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  25. Kowalsman N, Niv MY (2014) GPCR & company: databases and servers for GPCRs and interacting partners. Adv Exp Med Biol 796:185–204. https://doi.org/10.1007/978-94-7-7423-0_9

    Article  CAS  PubMed  Google Scholar 

  26. UniProt Consortium (2014) UniProt: A hub for protein information. Nucleic Acids Res 43(D1):D204–D212. https://doi.org/10.1093/nar/gku989

    Article  Google Scholar 

  27. Munk C, Isberg V, Mordalski S, Harpsøe K, Rataj K, Hauser AS, Kolb P, Bojarski AJ, Vriend G, Gloriam DE (2016) GPCRdb: the G protein-coupled receptor database – an introduction. Br J Pharmacol 173(14):2195–2207. https://doi.org/10.1111/bph.13509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Southan C, Sharman JL, Benson HE, Faccenda E, Pawson AJ, Alexander Stephen PH, Buneman OP, Davenport AP, McGrath JC, Peters JA, Spedding M, Catterall WA, Fabbro D, Davies JA (2015) The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res 44(D1):D1054–D1068. https://doi.org/10.1093/nar/gkv1037

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42(Database issue):D1083–D1090. https://doi.org/10.1093/nar/gkt1031

    Article  CAS  PubMed  Google Scholar 

  30. Esguerra M, Siretskiy A, Bello X, Sallander J, Gutiérrez-de-Terán H (2016) GPCR-ModSim: a comprehensive web based solution for modeling G-protein coupled receptors. Nucleic Acids Res 44(Web Server issue):W455–W462. https://doi.org/10.1093/nar/gkw403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Isberg V, de Graaf C, Bortolato A, Cherezov V, Katritch V, Marshall FH, Mordalski S, Pin J-P, Stevens RC, Vriend G, Gloriam DE (2015) Generic GPCR residue numbers – aligning topology maps while minding the gaps. Trends Pharmacol Sci 36(1):22–31. https://doi.org/10.1016/j.tips.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  32. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-y, Pieper U, Sali A (2001) Comparative protein structure modeling using MODELLER. In: Current protocols in protein science. John Wiley & Sons, Inc., Hoboken, NJ. https://doi.org/10.1002/0471140864.ps0209s50

    Google Scholar 

  33. Breiten B, Lockett MR, Sherman W, Fujita S, Al-Sayah M, Lange H, Bowers CM, Heroux A, Krilov G, Whitesides GM (2013) Water networks contribute to enthalpy/entropy compensation in protein–ligand binding. J Am Chem Soc 135(41):15579–15584. https://doi.org/10.1021/ja4075776

    Article  CAS  PubMed  Google Scholar 

  34. Truchon J-F, Pettitt BM, Labute P (2014) A cavity corrected 3D-RISM functional for accurate solvation free energies. J Chem Theory Comput 10(3):934–941. https://doi.org/10.1021/ct4009359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  36. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking1. J Mol Biol 267(3):727–748. https://doi.org/10.1006/jmbi.1996.0897

    Article  CAS  PubMed  Google Scholar 

  37. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adeniyi A, Ajibade P (2013) Comparing the suitability of autodock, gold and glide for the docking and predicting the possible targets of Ru(II)-based complexes as anticancer agents. Molecules 18(4):3760

    Article  CAS  PubMed  Google Scholar 

  39. Chung SY, Subbiah S (1996) A structural explanation for the twilight zone of protein sequence homology. Structure 4(10):1123–1127. https://doi.org/10.1016/S0969-2126(96)00119-0

    Article  CAS  PubMed  Google Scholar 

  40. Kneissl B, Leonhardt B, Hildebrandt A, Tautermann CS (2009) Revisiting automated G-protein coupled receptor modeling: the benefit of additional template structures for a Neurokinin-1 receptor model. J Med Chem 52(10):3166–3173. https://doi.org/10.1021/jm8014487

    Article  CAS  PubMed  Google Scholar 

  41. Chun E, Thompson AA, Liu W, Roth CB, Griffith MT, Katritch V, Kunken J, Xu F, Cherezov V, Hanson MA, Stevens RC (2012) Fusion partner Toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure(London, England:1993) 20(6):967–976. https://doi.org/10.1016/j.str.2012.04.010

    CAS  Google Scholar 

  42. Tautermann CS, Seeliger D, Kriegl JM (2015) What can we learn from molecular dynamics simulations for GPCR drug design? Comput Struct Biotechnol J 13:111–121. https://doi.org/10.1016/j.csbj.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  43. Weisel M, Proschak E, Schneider G (2007) PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J 1(1):7. https://doi.org/10.1186/1752-153x-1-7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Worth CL, Kreuchwig A, Kleinau G, Krause G (2011) GPCR-SSFE: a comprehensive database of G-protein-coupled receptor template predictions and homology models. BMC Bioinform 12(1):185. https://doi.org/10.1186/1471-2105-12-185

    Article  CAS  Google Scholar 

  45. Congreve M, Dias JM, Marshall FH (2014) Chapter one - structure-based drug design for G protein-coupled receptors. In: Lawton G, Witty DR (eds) Progress in medicinal chemistry, vol 53. Elsevier, Amsterdam, pp 1–63. https://doi.org/10.1016/B978-0-444-63380-4.00001-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christofer S. Tautermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tautermann, C.S. (2018). GPCR Homology Model Generation for Lead Optimization. In: Heifetz, A. (eds) Computational Methods for GPCR Drug Discovery. Methods in Molecular Biology, vol 1705. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7465-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7465-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7464-1

  • Online ISBN: 978-1-4939-7465-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics