Skip to main content

Ligand-Based Methods in GPCR Computer-Aided Drug Design

  • Protocol
  • First Online:
Computational Methods for GPCR Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1705))

Abstract

This chapter describes two powerful 3D ligand-based shape similarity and scoring methods called ROCS and EON, their basic operation and selected validation data. The steps required to prepare a database of molecules for successful use with ROCS and EON are described and selected examples of their application in prospective lead discovery experiments are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanrikulu Y, Kruger BJ, Proschak E (2013) The holistic integration of virtual screening in drug discovery. Drug Discov Today 18:358–364

    Article  PubMed  Google Scholar 

  2. Kraemer O, Hazemann I, Podjarny AD, Klebe G (2004) Virtual screening for inhibitors of aldose reductase. Proteins 55:814–823

    Article  CAS  PubMed  Google Scholar 

  3. Kruger DM, Evers A (2010) Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. ChemMedChem 5:148–158

    Article  PubMed  Google Scholar 

  4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. http://www.rcsb.org

  5. Milletti F, Vulpetti A (2010) Tautomer preferences in PDB complexes and its impact on structure-based drug discovery. J Chem Inf Model 50:1062–1107

    Article  CAS  PubMed  Google Scholar 

  6. Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model 50:572–584

    Google Scholar 

  7. Hawkins PCD, Nicholls A (2012) Conformer generation with OMEGA: learning from the data set and the analysis of failures. J Chem Inf Model 52:2919–2936

    Article  CAS  PubMed  Google Scholar 

  8. McGann M (2012) FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des 26:897–906

    Article  CAS  PubMed  Google Scholar 

  9. Svensson F, Karlén A, Sköld C (2012) Virtual screening data fusion using both structure- and ligand-based methods. J Chem Inf Model 52:225–232

    Article  CAS  PubMed  Google Scholar 

  10. Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82

    Article  CAS  PubMed  Google Scholar 

  11. Grant AJ, Gallardo MA, Pickup BT (1996) A fast method of molecular shape comparison: a simple application of a Gaussian description of molecular shape. J Comput Chem 17:1653–1666

    Article  CAS  Google Scholar 

  12. Mills JEJ, Dean PM (1996) Three-dimensional hydrogen-bond geometry and probability information from a crystal survey. J Comput Aided Mol Des 10:607. https://doi.org/10.1007/BF00134183

    Article  PubMed  Google Scholar 

  13. Geldenhuys WJ, Funk MO, Van dr Schyf CJ, Carroll RT (2012) A scaffold hopping approach to identify novel monoamine oxidase B inhibitors. Bioorg Med Chem Lett 22:1380–1383

    Article  CAS  PubMed  Google Scholar 

  14. Waldner BJ, Fuchs JE, Schauperl M, Kramer C, Liedl KR (2016) Protease inhibitors in view of peptide substrate databases. J Chem Inf Model 56:1228–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hall DR, Enyedy IJ (2016) The use of fake ligands from computational solvent mapping in ligand and structure-based virtual screening. Future Med Chem 8:1815–1822

    Article  CAS  PubMed  Google Scholar 

  16. Metz A, Schanda J, Grez M, Wichmann C, Gohlke H (2013) From determinants of RUNX1/ETO tetramerization to small-molecule protein-protein interaction inhibitors targeting acute myeloid leukemia. J Chem Inf Model 53:2196–2202

    Article  Google Scholar 

  17. Swann SL, Brown SP, Muchmore SW, Patel H, Merta P, Locklear J, Hajduk PJ (2013) A unified, probabilistic framework for structure- and ligand-based virtual screening. J Med Chem 54:1223–1232

    Article  Google Scholar 

  18. Vasudevan SR, Singh N, Churchill GC (2014) Scaffold hopping with virtual screening from IP3 to a drug-like partial agonist of the inositol trisphosphate receptor. Chembiochem 15:2774–2782

    Article  CAS  PubMed  Google Scholar 

  19. Santa Cruz EC, Carecho AR, Saidel ME, Montanari CA, Leitao A (2017) In silico selection and cell-based characterization of selective and bioactive compounds for androgen-dependent prostate cancer cell. Bioorg Med Chem Lett 27:546–550

    Article  Google Scholar 

  20. Santos-Sierra S, Kirchmair J, Perna AM, Reiss D, Kemter K, Roschinger W, Glossmann H, Gersting SW, Muntau AC, Wolber G, Lagler FB (2012) Novel pharmacological chaperones that correct phenylketonuria in mice. Hum Mol Genet 21:1877–1887

    Article  CAS  PubMed  Google Scholar 

  21. Vasudevan SR, Moore JB, Schymura Y, Churchill GC (2012) Shape-based reprofiling of FDA-approved drugs for the H1 histamine receptor. J Med Chem 55:7054–7059

    Article  CAS  PubMed  Google Scholar 

  22. EON 2.2.0.5: OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com

  23. Zap Toolkit 2017.Feb.1, (2016) OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com

  24. Boström J, Grant JA, Fjellström O, Thelin A, Gustafsson D (2013) Potent fibrinolysis inhibitor discovered by shape and electrostatic complementarity to the drug tranexamic acid. J Med Chem 56:3273–3280

    Article  PubMed  Google Scholar 

  25. Muchmore SW, Souers AJ, Akritopoulou-Zanze I (2006) The use of three-dimensional shape and electrostatic similarity searching in the identification of a melanin-concentrating hormone receptor 1 antagonist. Chem Biol Drug Des 67:174–176

    Google Scholar 

  26. Markt P, Petersen RK, Flindt EN, Kristiansen K, Kirchmair J, Spitzer G, Distino S, Schuster D, Wolber G, Laggner C, Langer T (2008) Discovery of novel PPAR ligands by a virtual screening approach based on pharmacophore modeling, 3D shape and electrostatic similarity screening. J Med Chem 51:6303–6317

    Google Scholar 

  27. Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A, Rosen D, Thomas JM, Izumi M, Ganesan A, Galione A, Churchill GC (2009) Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol 5:220–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29

    Article  CAS  PubMed  Google Scholar 

  29. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789−6801

    PubMed Central  Google Scholar 

  30. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Google Scholar 

  31. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd. Edition. Lawrence Erlbaum Associates: Mahwah NJ.

    Google Scholar 

  32. Hawkins PCD, Kelley BP, Warren GL (2014) The application of statistical methods to cognate docking: a path forward? J Chem Inf Model 54:1339–1355

    Article  CAS  PubMed  Google Scholar 

  33. Student (1908) The probable error of a mean. Biometrika 6:1–25

    Article  Google Scholar 

  34. Weiss DR, Bortolato A, Tehan B, Mason JS (2016) GPCR-Bench: a benchmarking set and practitioner’s guide for G Protein-Coupled Receptor docking. J Chem Inf Model 56:642–651

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunther Stahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hawkins, P.C.D., Stahl, G. (2018). Ligand-Based Methods in GPCR Computer-Aided Drug Design. In: Heifetz, A. (eds) Computational Methods for GPCR Drug Discovery. Methods in Molecular Biology, vol 1705. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7465-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7465-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7464-1

  • Online ISBN: 978-1-4939-7465-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics