Type IA DNA Topoisomerases: A Universal Core and Multiple Activities

  • Florence Garnier
  • Hélène Debat
  • Marc NadalEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1703)


All the type IA topoisomerases display universal characteristics relying on a core region basically responsible for the transesterification and the strand passage reaction. First limited to the bacterial domain for a long time, these enzymes were further retrieved in Archaea and Eukarya as well. This is representative of an extremely ancient origin, probably due to an inheritance from the RNA world. As remaining evidence, some current topoisomerases IA have retained a RNA topoisomerase activity. Despite the presence of this core region in all of these TopoIAs, some differences exist and are originated from variable regions, located essentially within both extremities, conferring on them their specificities. During the last 2 decades the evidence of multiple activities and dedicated roles highlighted the importance of the topoisomerases IA. It is now obvious that topoisomerases IA are key enzymes involved in the maintenance of the genome stability. The discovery of these new activities was done thanks to the use of more accurate assays, based on new sophisticated DNA substrates.

Key words

Topoisomerases Type 1A Topoisomerase I Topoisomerase III Reverse gyrase topA topB toprim 



We are grateful to Terence Strick both for the laboratory facilities and helpful discussions.


  1. 1.
    Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738PubMedCrossRefGoogle Scholar
  2. 2.
    Chen SH, Chan N-L, Hsieh T-S (2013) New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem 82:139–170PubMedCrossRefGoogle Scholar
  3. 3.
    Wang JC (1971) Interaction between DNA and an Escherichia coli protein omega. J Mol Biol 55:523–533PubMedCrossRefGoogle Scholar
  4. 4.
    Champoux JJ, Dulbecco R (1972) An activity from mammalian cells that untwists superhelical DNA – a possible swivel for DNA replication (polyoma-ethidium bromide-mouse-embryo cells-dye binding assay). Proc Natl Acad Sci U S A 69:143–146PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Gellert M, Mizuuchi K, O’Dea MH, Nash HA (1976) DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A 73:3872–3876PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Liu LF, Liu CC, Alberts BM (1980) Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell 19:697–707PubMedCrossRefGoogle Scholar
  7. 7.
    Wang JC (1991) DNA topoisomerases: why so many? J Biol Chem 266:6659–6662PubMedGoogle Scholar
  8. 8.
    Nadal M (2007) Reverse gyrase: an insight into the role of DNA-topoisomerases. Biochimie 89:447–455PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang Z, Cheng B, Tse-Dinh Y-C (2011) Crystal structure of a covalent intermediate in DNA cleavage and rejoining by Escherichia coli DNA topoisomerase I. Proc Natl Acad Sci U S A 108:6939–6944PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Patel A, Yakovleva L, Shuman S, Mondragón A (2010) Crystal structure of a bacterial topoisomerase IB in complex with DNA reveals a secondary DNA binding site. Structure 18:725–733PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17:421–433PubMedCrossRefGoogle Scholar
  12. 12.
    Jaxel C, Bouthier de la Tour C, Duguet M, Nadal M (1996) Reverse gyrase gene from Sulfolobus shibatae B12: gene structure, transcription unit and comparative sequence analysis of the two domains. Nucleic Acids Res 24:4668–4675PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Slesarev AI, Lake JA, Stetter KO et al (1994) Purification and characterization of DNA topoisomerase V. An enzyme from the hyperthermophilic prokaryote Methanopyrus kandleri that resembles eukaryotic topoisomerase I. J Biol Chem 269:3295–3303PubMedGoogle Scholar
  14. 14.
    Aravind L (1998) Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res 26:4205–4213PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rajan R, Osterman AK, Gast AT, Mondragón A (2014) Biochemical characterization of the topoisomerase domain of M. kandleri topoisomerase V. J Biol Chem 289:28898–28909PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Duguet M, Serre M-C, Bouthier de La Tour C (2006) A universal type IA topoisomerase fold. J Mol Biol 359:805–812PubMedCrossRefGoogle Scholar
  17. 17.
    Usongo V, Drolet M (2014) Roles of type 1A topoisomerases in genome maintenance in Escherichia coli. PLoS Genet 10:e1004543–e1004543PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bouthier de la Tour C, Portemer C, Kaltoum H, Duguet M (1998) Reverse gyrase from the hyperthermophilic bacterium Thermotoga maritima: properties and gene structure. J Bacteriol 180:274–281PubMedGoogle Scholar
  19. 19.
    Roca J, Berger JM, Harrison SC, Wang JC (1996) DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proc Natl Acad Sci U S A 93:4057–4062PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Corbett KD, Berger JM (2005) Structural dissection of ATP turnover in the prototypical GHL ATPase TopoVI. Structure 13:873–882PubMedCrossRefGoogle Scholar
  21. 21.
    Bergerat AA, Gadelle DD, Forterre PP (1994) Purification of a DNA topoisomerase II from the hyperthermophilic archaeon Sulfolobus shibatae. A thermostable enzyme with both bacterial and eucaryal features. J Biol Chem 269:27663–27669PubMedGoogle Scholar
  22. 22.
    Bergerat A, de Massy B, Gadelle D et al (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386:414–417PubMedCrossRefGoogle Scholar
  23. 23.
    Yin Y, Cheong H, Friedrichsen D et al (2002) A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development. Proc Natl Acad Sci U S A 99:10191–10196PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rudolph MG, Del Toro Duany Y, Jungblut SP et al (2013) Crystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling. Nucleic Acids Res 41:1058–1070PubMedCrossRefGoogle Scholar
  25. 25.
    Lima CD, Wang JC, Mondragón A (1992) Crystallization of a 67 kDa fragment of Escherichia coli DNA topoisomerase I. J Mol Biol 232:1213–1216CrossRefGoogle Scholar
  26. 26.
    Vrielynck N, Chambon A, Vezon D et al (2016) A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 351:939–943PubMedCrossRefGoogle Scholar
  27. 27.
    Robert T, Nore A, Brun C et al (2016) The TopoVIB-like protein family is required for meiotic DNA double-strand break formation. Science 351:943–949PubMedCrossRefGoogle Scholar
  28. 28.
    Lima CD, Wang JC, Mondragón A (1994) Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I. Nature 367:138–146PubMedCrossRefGoogle Scholar
  29. 29.
    Feinberg H, Lima CD, Mondragón A (1999) Conformational changes in E. coli DNA topoisomerase I. Nat Struct Biol 6:918–922PubMedCrossRefGoogle Scholar
  30. 30.
    Mondragón A, DiGate R (1999) The structure of Escherichia coli DNA topoisomerase III. Structure 7:1373–1383PubMedCrossRefGoogle Scholar
  31. 31.
    Changela A, DiGate RJ, Mondragón A (2001) Crystal structure of a complex of a type IA DNA topoisomerase with a single-stranded DNA molecule. Nature 411:1077–1081PubMedCrossRefGoogle Scholar
  32. 32.
    Rodríguez AC, Stock D (2002) Crystal structure of reverse gyrase: insights into the positive supercoiling of DNA. EMBO J 21:418–426PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Perry K, Mondragón A (2003) Structure of a complex between E. coli DNA topoisomerase I and single-stranded DNA. Structure 11:1349–1358PubMedCrossRefGoogle Scholar
  34. 34.
    Tan K, Zhou Q, Cheng B et al (2015) Structural basis for suppression of hypernegative DNA supercoiling by E. coli topoisomerase I. Nucleic Acids Res 43:11031–11046PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Liu Q, Wang JC (1999) Similarity in the catalysis of DNA breakage and rejoining by type IA and IIA DNA topoisomerases. Proc Natl Acad Sci U S A 96:881–886PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Graille M, Cladière L, Durand D et al (2008) Crystal structure of an intact type II DNA topoisomerase: insights into DNA transfer mechanisms. Structure 16:360–370PubMedCrossRefGoogle Scholar
  37. 37.
    Changela A, DiGate RJ, Mondragón A (2007) Structural studies of E. Coli topoisomerase III-DNA complexes reveal a novel type IA topoisomerase-DNA conformational intermediate. J Mol Biol 368:105–118PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tan K, Cao N, Cheng B et al (2015) Insights from the structure of Mycobacterium tuberculosis topoisomerase I with a novel protein fold. J Mol Biol 428:182–193PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Cossard R, Viard T, Lamour V et al (2004) Proteolytic cleavage of the hyperthermophilic topoisomerase I from Thermotoga maritima does not impair its enzymatic properties. Biochim Biophys Acta 1700:161–170PubMedCrossRefGoogle Scholar
  40. 40.
    Chen SJ, Wang JC (1998) Identification of active site residues in Escherichia coli DNA topoisomerase I. J Biol Chem 273:6050–6056PubMedCrossRefGoogle Scholar
  41. 41.
    Zhu CX, Tse-Dinh YC (2000) The acidic triad conserved in type IA DNA topoisomerases is required for binding of Mg(II) and subsequent conformational change. J Biol Chem 275:5318–5322PubMedCrossRefGoogle Scholar
  42. 42.
    Viard T, Lamour V, Duguet M, la Tour de CB (2001) Hyperthermophilic topoisomerase I from Thermotoga maritima. A very efficient enzyme that functions independently of zinc binding. J Biol Chem 276:46495–46503PubMedCrossRefGoogle Scholar
  43. 43.
    Viard T, Cossard R, Duguet M, la Tour de CB (2004) Thermotoga maritima-Escherichia coli chimeric topoisomerases. Answers about involvement of the carboxyl-terminal domain in DNA topoisomerase I-mediated catalysis. J Biol Chem 279:30073–30080PubMedCrossRefGoogle Scholar
  44. 44.
    Cheng B, Shukla S, Vasunilashorn S et al (2005) Bacterial cell killing mediated by topoisomerase I DNA cleavage activity. J Biol Chem 280:38489–38495PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cheng B, Annamalai T, Sorokin E et al (2009) Asp-to-Asn substitution at the first position of the DxD TOPRIM motif of recombinant bacterial topoisomerase I is extremely lethal to E. coli. J Mol Biol 385:558–567PubMedCrossRefGoogle Scholar
  46. 46.
    Tse-Dinh YC (2007) Exploring DNA topoisomerases as targets of novel therapeutic agents in the treatment of infectious diseases. Infect Disord Drug Targets 7:3–9PubMedCrossRefGoogle Scholar
  47. 47.
    Mizushima T, Natori S, Sekimizu K (1992) Inhibition of Escherichia coliDNA topoisomerase I activity by phospholipids. Biochem J 285:503–506PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Tse-Dinh YC (2009) Bacterial topoisomerase I as a target for discovery of antibacterial compounds. Nucleic Acids Res 37:731–737PubMedCrossRefGoogle Scholar
  49. 49.
    Cheng B, Liu I-F, Tse-Dinh Y-C (2007) Compounds with antibacterial activity that enhance DNA cleavage by bacterial DNA topoisomerase I. J Antimicrob Chemother 59:640–645PubMedCrossRefGoogle Scholar
  50. 50.
    Cheng B, Cao S, Vasquez V et al (2012) Identification of anziaic acid, a lichen depside from Hypotrachyna sp., as a new topoisomerase poison inhibitor. PLoS One 8:e60770–e60770CrossRefGoogle Scholar
  51. 51.
    Cheng B, Annamalai T, Sandhaus S et al (2015) Inhibition of Zn(II) binding type IA topoisomerases by organomercury compounds and Hg(II). PLoS One 10:e0120022PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    García MT, Blázquez MA, Ferrandiz MJ et al (2011) New alkaloid antibiotics that target the DNA topoisomerase I of Streptococcus pneumoniae. J Biol Chem 286:6402–6413PubMedCrossRefGoogle Scholar
  53. 53.
    Godbole AA, Ahmed W, Bhat RS et al (2015) Targeting Mycobacterium tuberculosis topoisomerase I by small-molecule inhibitors. Antimicrob Agents Chemother 59:1549–1557PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    DiGate RJ, Marians KJ (1988) Identification of a potent decatenating enzyme from Escherichia coli. J Biol Chem 263:13366–13373PubMedGoogle Scholar
  55. 55.
    Nadal M, Mirambeau G, Forterre P et al (1986) Positively supercoiled DNA in a virus-like particle of an Archaebacterium. Nature 321:256–258CrossRefGoogle Scholar
  56. 56.
    Kirkegaard K, Wang JC (1985) Bacterial-DNA topoisomerase-I can relax positively supercoiled DNA containing a single-stranded loop. J Mol Biol 185:625–637PubMedCrossRefGoogle Scholar
  57. 57.
    Slesarev AI, Kozyavkin SA (1990) DNA substrate specificity of reverse gyrase from extremely thermophilic archaebacteria. J Biomol Struct Dyn 7:935–942PubMedCrossRefGoogle Scholar
  58. 58.
    Hsieh T-S, Plank JL (2006) Reverse gyrase functions as a DNA renaturase: annealing of complementary single-stranded circles and positive supercoiling of a bubble substrate. J Biol Chem 281:5640–5647PubMedCrossRefGoogle Scholar
  59. 59.
    Hansen G, Harrenga A, Wieland B et al (2006) Crystal structure of full length topoisomerase I from Thermotoga maritima. J Mol Biol 358:1328–1340PubMedCrossRefGoogle Scholar
  60. 60.
    Li Z, Mondragón A, Hiasa H et al (2000) Identification of a unique domain essential for Escherichia coli DNA topoisomerase III-catalysed decatenation of replication intermediates. Mol Microbiol 35:888–895PubMedCrossRefGoogle Scholar
  61. 61.
    Viard T, Bouthier de La Tour C (2007) Type IA topoisomerases: a simple puzzle? Biochimie 89:456–467PubMedCrossRefGoogle Scholar
  62. 62.
    Kikuchi A, Asai K (1984) Reverse gyrase – a topoisomerase which introduces positive superhelical turns into DNA. Nature 309:677–681PubMedCrossRefGoogle Scholar
  63. 63.
    Forterre P, Mirambeau G, Jaxel C et al (1985) High positive supercoiling in vitro catalyzed by an ATP and polyethylene glycol-stimulated topoisomerase from Sulfolobus acidocaldarius. EMBO J 4:2123–2128PubMedPubMedCentralGoogle Scholar
  64. 64.
    Nadal M, Jaxel C, Portemer C et al (1988) Reverse gyrase of Sulfolobus: purification to homogeneity and characterization. Biochemistry 27:9102–9108PubMedCrossRefGoogle Scholar
  65. 65.
    Confalonieri F, Elie C, Nadal M et al (1993) Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same polypeptide. Proc Natl Acad Sci U S A 90:4753–4757PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lulchev P, Klostermeier D (2014) Reverse gyrase-recent advances and current mechanistic understanding of positive DNA supercoiling. Nucleic Acids Res 42:8200–8213PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rodríguez AC (2003) Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase. Biochemistry 42:5993–6004PubMedCrossRefGoogle Scholar
  68. 68.
    Ganguly A, Del Toro Duany Y, Rudolph MG, Klostermeier D (2011) The latch modulates nucleotide and DNA binding to the helicase-like domain of Thermotoga maritima reverse gyrase and is required for positive DNA supercoiling. Nucleic Acids Res 39:1789–1800PubMedCrossRefGoogle Scholar
  69. 69.
    Del Toro Duany Y, Ganguly A, Klostermeier D (2014) Differential contributions of the latch in Thermotoga maritima reverse gyrase to the binding of single-stranded DNA before and after ATP hydrolysis. Biol Chem 395:83–93PubMedGoogle Scholar
  70. 70.
    Chute IC, Hu Z, Liu XQ (1998) A topA intein in Pyrococcus furiosus and its relatedness to the r-gyr intein of Methanococcus jannaschii. Gene 210:85–92PubMedCrossRefGoogle Scholar
  71. 71.
    Gangloff S, McDonald JP, Bendixen C et al (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 14:8391–8398PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Harmon FG, DiGate RJ, Kowalczykowski SC (1999) RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control of DNA recombination. Mol Cell 3:611–620PubMedCrossRefGoogle Scholar
  73. 73.
    Wu L, Davies SL, North PS et al (2000) The Bloom’s syndrome gene product interacts with topoisomerase III. J Biol Chem 275:9636–9644PubMedCrossRefGoogle Scholar
  74. 74.
    Wu L, Hickson ID (2001) RecQ helicases and topoisomerases: components of a conserved complex for the regulation of genetic recombination. Cell Mol Life Sci 58:894–901PubMedCrossRefGoogle Scholar
  75. 75.
    Valenti A, De Felice M, Perugino G et al (2012) Synergic and opposing activities of Thermophilic RecQ-like helicase and topoisomerase 3 proteins in Holliday junction processing and replication fork stabilization. J Biol Chem 287:30282–30295PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Chen SH, C-H W, Plank JL, Hsieh T-S (2012) Essential functions of the C-terminus of Drosophila topoisomerase IIIα in double Holliday junction dissolution. J Biol Chem 287:19346–19353PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Xu D, Guo R, Sobeck A et al (2008) RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability. Genes Dev 22:2843–2855PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Bocquet N, Bizard AH, Abdulrahman W et al (2014) Structural and mechanistic insight into Holliday-junction dissolution by topoisomerase IIIα and RMI1. Nat Struct Mol Biol 21(3):261–268PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mullen JR, Nallaseth FS, Lan YQ et al (2005) Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex. Mol Cell Biol 25:4476–4487PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Banda S, Tiwari PB, Darici Y, Tse-Dinh YC (2016) Investigating direct interaction between Escherichia coli topoisomerase I and RecA. Gene 585:65–70PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Reckinger AR, Jeong KS, Khodursky AB, Hiasa H (2007) RecA can stimulate the relaxation activity of topoisomerase I: molecular basis of topoisomerase-mediated genome-wide transcriptional responses in Escherichia coli. Nucleic Acids Res 35:79–86PubMedCrossRefGoogle Scholar
  82. 82.
    Cheng B, Zhu C-X, Ji C et al (2003) Direct interaction between Escherichia coli RNA polymerase and the zinc ribbon domains of DNA topoisomerase I. J Biol Chem 278:30705–30710PubMedCrossRefGoogle Scholar
  83. 83.
    Yang Y, McBride KM, Hensley S et al (2014) Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation. Mol Cell 53:484–497PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Siaw GE-L, Liu I-F, Lin P-Y et al (2016) DNA and RNA topoisomerase activities of Top3{beta} are promoted by mediator protein Tudor domain-containing protein 3. Proc Natl Acad Sci U S A 113:5544–5541CrossRefGoogle Scholar
  85. 85.
    Xu D, Shen W, Guo R et al (2013) Top3β is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation. Nat Neurosci 16:1238–1247PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ahmad M, Xue Y, Lee SK et al (2016) RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Res 44:6335–6349PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Tse-Dinh YC (1985) Regulation of the Escherichia coli DNA topoisomerase I gene by DNA supercoiling. Nucleic Acids Res 13:4751–4763PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Dorman CJ (2013) Genome architecture and global gene regulation in bacteria: making progress towards a unified model? Nat Rev Microbiol 11:349–355PubMedCrossRefGoogle Scholar
  89. 89.
    Masse E, Drolet M (1999) Relaxation of transcription-induced negative supercoiling is an essential function of Escherichia coli DNA topoisomerase I. J Biol Chem 274:16654–16658PubMedCrossRefGoogle Scholar
  90. 90.
    Drolet M, Bi X, Liu LF (1994) Hypernegative supercoiling of the DNA template during transcription elongation in vitro. J Biol Chem 269:2068–2074PubMedGoogle Scholar
  91. 91.
    Drolet M, Phoenix P, Menzel R et al (1995) Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc Natl Acad Sci U S A 92:3526–3530PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Masse E, Drolet M (1999) Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J Biol Chem 274:16659–16664PubMedCrossRefGoogle Scholar
  93. 93.
    Drolet M (2006) Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol Microbiol 59:723–730PubMedCrossRefGoogle Scholar
  94. 94.
    Higgins NP, Vologodskii AV (2015) Topological behavior of plasmid DNA. Microbiol Spectr 3:1–25CrossRefGoogle Scholar
  95. 95.
    Stupina VA, Wang JC (2005) Viability of Escherichia coli topA mutants lacking DNA topoisomerase I. J Biol Chem 280:355–360PubMedCrossRefGoogle Scholar
  96. 96.
    Wang H, Di Gate RJ, Seeman NC (1996) An RNA topoisomerase. Proc Natl Acad Sci U S A 93:9477–9482PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Nurse P, Levine C, Hassing H, Marians KJ (2003) Topoisomerase III can serve as the cellular decatenase in Escherichia coli. J Biol Chem 278:8653–8660PubMedCrossRefGoogle Scholar
  98. 98.
    Hiasa H, Marians KJ (1994) Topoisomerase III, but not topoisomerase I, can support nascent chain elongation during theta-type DNA replication. J Biol Chem 269:32655–32659PubMedGoogle Scholar
  99. 99.
    Harmon FG, Brockman JP, Kowalczykowski SC (2003) RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase III. J Biol Chem 278:42668–42678PubMedCrossRefGoogle Scholar
  100. 100.
    Zechiedrich EL, Cozzarelli NR (1995) Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev 9:2859–2869PubMedCrossRefGoogle Scholar
  101. 101.
    Lopez CR, Yang S, Deibler RW et al (2005) A role for topoisomerase III in a recombination pathway alternative to RuvABC. Mol Microbiol 58:80–101PubMedCrossRefGoogle Scholar
  102. 102.
    Fasching CL, Cejka P, Kowalczykowski SC, Heyer W-D (2015) Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism. Mol Cell 57:595–606PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Chen SH, Plank JL, Willcox S et al (2014) Top3α is required during the convergent migration step of double Holliday junction dissolution. PLoS One 9:e83582PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Bizard AH, Hickson ID (2014) The dissolution of double Holliday junctions. Cold Spring Harb Perspect Biol 6:a016477–a016477PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Bell SD, Jaxel C, Nadal M et al (1998) Temperature, template topology, and factor requirements of archaeal transcription. Proc Natl Acad Sci U S A 95:15218–15222PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Atomi H, Matsumi R, Imanaka T (2004) Reverse gyrase is not a prerequisite for hyperthermophilic life. J Bacteriol 186:4829–4833PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zhang C, Tian B, Li S et al (2013) Genetic manipulation in Sulfolobus islandicus and functional analysis of DNA repair genes. Biochem Soc Trans 41:405–410PubMedCrossRefGoogle Scholar
  108. 108.
    Hsieh T-S, Capp C (2005) Nucleotide- and stoichiometry-dependent DNA supercoiling by reverse gyrase. J Biol Chem 280:20467–20475PubMedCrossRefGoogle Scholar
  109. 109.
    Bizard A, Garnier F, Nadal M (2011) TopR2, the second reverse gyrase of Sulfolobus solfataricus, exhibits unusual properties. J Mol Biol 408:839–849PubMedCrossRefGoogle Scholar
  110. 110.
    Garnier F, Nadal M (2008) Transcriptional analysis of the two reverse gyrase encoding genes of Sulfolobus solfataricus P2 in relation to the growth phases and temperature conditions. Extremophiles 12:799–809PubMedCrossRefGoogle Scholar
  111. 111.
    Couturier M, Bizard AH, Garnier F, Nadal M (2014) Insight into the cellular involvement of the two reverse gyrases from the hyperthermophilic archaeon Sulfolobus solfataricus. BMC Mol Biol 15:18PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Quaiser A, Constantinesco F, White MF et al (2008) The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius. BMC Mol Biol 9:25PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Rolfsmeier ML, Laughery MF, Haseltine CA (2011) Repair of DNA double-strand breaks induced by ionizing radiation damage correlates with upregulation of homologous recombination genes in Sulfolobus solfataricus. J Mol Biol 414:485–498PubMedCrossRefGoogle Scholar
  114. 114.
    Larmony S, Garnier F, Hoste A, Nadal M (2015) A specific proteomic response of Sulfolobus solfataricus P2 to gamma radiations. Biochimie 118:270–277PubMedCrossRefGoogle Scholar
  115. 115.
    Li Z, Hiasa H, DiGate R (2004) Bacillus cereus DNA topoisomerase I and IIIalpha: purification, characterization and complementation of Escherichia coli TopoIII activity. Nucleic Acids Res 33:5415–5425CrossRefGoogle Scholar
  116. 116.
    Vanga BR, Butler RC, Toth IK et al (2012) Inactivation of PbTopo IIIβ causes hyper-excision of the Pathogenicity Island HAI2 resulting in reduced virulence of Pectobacterium atrosepticum. Mol Microbiol 84:648–663PubMedCrossRefGoogle Scholar
  117. 117.
    Dai P, Wang Y, Ye R et al (2003) DNA topoisomerase III from the hyperthermophilic archaeon Sulfolobus solfataricus with specific DNA cleavage activity. J Bacteriol 185:5500–5507PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 37:679–692PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ahmed W, Menon S, Karthik PVDNB, Nagaraja V (2015) Autoregulation of topoisomerase I expression by supercoiling sensitive transcription. Nucleic Acids Res 0:10881–11088Google Scholar
  120. 120.
    Forterre P (2015) The universal tree of life: an update. Front Microbiol 6:717PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Chen SH, Plank JL, Willcox S et al (2013) Improved methods for creating migratable Holliday junction substrates. Nucleic Acids Res 41:e60PubMedCrossRefGoogle Scholar
  122. 122.
    Dekker NH, Viard T, Bouthier de la Tour C et al (2003) Thermophilic topoisomerase I on a single DNA molecule. J Mol Biol 329:271–282PubMedCrossRefGoogle Scholar
  123. 123.
    Szafran MJ, Strick T, Strzałka A et al (2014) A highly processive topoisomerase I: studies at the single-molecule level. Nucleic Acids Res 42:7935–7946PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ogawa T, Yogo K, Furuike S et al (2015) Direct observation of DNA overwinding by reverse gyrase. Proc Natl Acad Sci U S A 112:7495–7500PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ogawa T, Sutoh K, Kikuchi A, Kinosita K (2016) Torsional stress in DNA limits collaboration among reverse gyrase molecules. FEBS J 283:1372–1384PubMedCrossRefGoogle Scholar
  126. 126.
    Terekhova K, Gunn KH, Marko JF, Mondragón A (2012) Bacterial topoisomerase I and topoisomerase III relax supercoiled DNA via distinct pathways. Nucleic Acids Res 40:10432–10440PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Terekhova K, Marko JF, Mondragón A (2014) Single-molecule analysis uncovers the difference between the kinetics of DNA decatenation by bacterial topoisomerases I and III. Nucleic Acids Res 42:11657–11667PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Rajan R, Osterman A, Mondragón A (2016) Methanopyrus kandleri topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site. Nucleic Acids Res 44:3464–3474PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Blower TR, Williamson BH, Kerns RJ, Berger JM (2016) Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 113:1706–1713PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Corbett KD, Benedetti P, Berger JM (2007) Holoenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI. Nat Struct Mol Biol 14:611–619PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Université Versailles St-QuentinInstitut Jacques Monod, UMR 7592 CNRS-Univ. Paris DiderotParisFrance
  2. 2.Institut Jacques MonodUMR 7592 CNRS-Université Paris DiderotParisFrance

Personalised recommendations