Skip to main content

A Method for Cross-Species Visualization and Analysis of RNA-Sequence Data

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1702))

Abstract

In this methods article, I describe a computational workflow for cross-species visualization and comparison of mRNA-seq transcriptome profiling data. The workflow is based on gene set variation analysis (GSVA) and is illustrated using commands in the R programming language. I provide a complete step-by-step procedure for the workflow using mRNA-seq data sets from dog and human bladder cancer as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628. https://doi.org/10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  2. Lister R, O'Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536. https://doi.org/10.1016/j.cell.2008.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramsey SA, Xu T, Goodall C et al (2017) Cross-species analysis of the canine and human bladder cancer transcriptome and exome. Genes Chrom Cancer (4):56, 328–343. https://doi.org/10.1002/gcc.22441

  4. Fowles JS, Brown KC, Hess AM et al (2016) Intra- and interspecies gene expression models for predicting drug response in canine osteosarcoma. BMC Bioinformatics 17:93. https://doi.org/10.1186/s12859-016-0942-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dhawan D, Paoloni M, Shukradas S et al (2015) Comparative gene expression analyses identify luminal and basal subtypes of canine invasive urothelial carcinoma that mimic patterns in human invasive bladder cancer. PLoS One 10:e0136688. https://doi.org/10.1371/journal.pone.0136688

    Article  PubMed  PubMed Central  Google Scholar 

  6. Seok J, Warren HS, Cuenca AG et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci 110:3507–3512. https://doi.org/10.1073/pnas.1222878110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shay T, Jojic V, Zuk O et al (2013) Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proc Natl Acad Sci 110:2946–2951. https://doi.org/10.1073/pnas.1222738110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan ET, Quon GT, Chua G et al (2009) Conservation of core gene expression in vertebrate tissues. J Biol 8:33. https://doi.org/10.1186/jbiol130

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brawand D, Soumillon M, Necsulea A et al (2011) The evolution of gene expression levels in mammalian organs. Nature 478:343–348. https://doi.org/10.1038/nature10532

    Article  CAS  PubMed  Google Scholar 

  10. Lin S, Lin Y, Nery JR et al (2014) Comparison of the transcriptional landscapes between human and mouse tissues. Proc Natl Acad Sci 111:17224–17229. https://doi.org/10.1073/pnas.1413624111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilad Y, Mizrahi-Man O (2015) A reanalysis of mouse ENCODE comparative gene expression data. F1000Research 4:121. 10.12688/f1000research.6536.1

    PubMed  PubMed Central  Google Scholar 

  12. Sudmant PH, Alexis MS, Burge CB (2015) Meta-analysis of RNA-seq expression data across species, tissues and studies. Genome Biol 16:287. https://doi.org/10.1186/s13059-015-0853-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 14:7. https://doi.org/10.1186/1471-2105-14-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. NIH Genomic Data Commons Data Portal (2016) v. 4.0. https://gdc-portal.nci.nih.gov

  15. Ripley BD (2001) The R project in statistical computing (2001). MSOR Connections. Newsl LTSN Maths Stat OR Network 1:23–25

    Google Scholar 

  16. Ihaka R, Gentleman R (1995) R: a language for data analysis and graphics. J Comp Graph Stat 5:299–314

    Google Scholar 

  17. Hornik K (2012) The comprehensive R archive network. Comput Stat 4:394–398. https://doi.org/10.1002/wics.1212

    Article  Google Scholar 

  18. Wickham H (2007) Reshaping data with the {reshape} package. J Stat Software 21:1–20

    Article  Google Scholar 

  19. Wickham H (2009) ggplot2: elegant graphics for dataanalysis. Springer, New York, NY

    Book  Google Scholar 

  20. Love MI, Huber W, Anders S (2013) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/PREACCEPT-8897612761307401

    Article  Google Scholar 

  21. Smedley D, Haider S, Ballester B et al (2009) BioMart—biological queries made easy. BMC Genomics 10:22. https://doi.org/10.1186/1471-2164-10-22

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cunningham F, Amode MR, Barrell D et al (2015) Ensembl 2015. Nucleic Acids Res 43:D662–D669. https://doi.org/10.1093/nar/gku1010

    Article  CAS  PubMed  Google Scholar 

  23. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liberzon A (2014) A description of the Molecular Signatures Database (MSigDB) Web site. Methods Mol Biol 1150:153–160. https://doi.org/10.1007/978-1-4939-0512-6_9

    Article  CAS  PubMed  Google Scholar 

  26. Molecular Signatures Database (MSigDB) (2016) v. 5.2. http://software.broadinstitute.org/gsea/msigdb

  27. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  28. Wickham H (2014) Tidy data. J Stat Software 59:10. 10.18637/jss.v059.i10

    Article  Google Scholar 

  29. Lin Y, Golovnina K, Chen Z-X et al (2016) Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual Drosophila melanogaster. BMC Genomics 17:28. https://doi.org/10.1186/s12864-015-2353-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. George NI, Chang C-W (2014) DAFS: a data-adaptive flag method for RNA-sequencing data to differentiate genes with low and high expression. BMC Bioinformatics 15:92. https://doi.org/10.1186/1471-2105-15-92

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cox MAA, Cox TF (2001) Multidimensional scaling, 2nd edn. Chapman and Hall, Boca Raton, FL

    Google Scholar 

  32. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (award 1553728-DBI), the PhRMA Foundation (Research Starter Grant in Informatics), the Medical Research Foundation of Oregon (New Investigator Grant), and the Animal Cancer Foundation (Comparative Oncology Award). S.A.R. thanks Shay Bracha and Cheri Goodall for kindly providing the dog bladder RNA samples that were used in the transcriptome profiling study [3], Tanjin Xu for assistance with the mRNA-seq data processing, Brent Kronmiller for help with designing the dog mRNA-seq study, and Ilya Shmulevich, Sheila Reynolds, and Matti Nykter for advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Ramsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramsey, S.A. (2018). A Method for Cross-Species Visualization and Analysis of RNA-Sequence Data. In: Bizzarri, M. (eds) Systems Biology. Methods in Molecular Biology, vol 1702. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7456-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7456-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7455-9

  • Online ISBN: 978-1-4939-7456-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics