Skip to main content

Conceptual Challenges in the Theoretical Foundations of Systems Biology

  • Protocol
  • First Online:
Book cover Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1702))

Abstract

In the last decade, Systems Biology has emerged as a conceptual and explanatory alternative to reductionist-based approaches in molecular biology. However, the foundations of this new discipline need to be fleshed out more carefully. In this paper, we claim that a relational ontology is a necessary tool to ground both the conceptual and explanatory aspects of Systems Biology. A relational ontology holds that relations are prior—both conceptually and explanatory—to entities, and that in the biological realm entities are defined primarily by the context they are embedded within—and hence by the web of relations they are part of.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morange M (1998) A history of molecular biology. Harvard University Press, Cambridge, MA

    Google Scholar 

  2. Rheinberger H-J (2007) What happened to molecular biology? BIF Futura 22:218–223

    Google Scholar 

  3. Weinberg RA (2014) Coming full circle-from endless complexity to simplicity and back again. Cell 157(1):267–271. https://doi.org/10.1016/j.cell.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  4. Darden L (2006) Reasoning in biological discoveries. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  5. Bechtel W, Richardson R (2010) Discovering complexity - decomposition and localization as strategies in scientific research. The MIT Press, Cambridge, MA

    Google Scholar 

  6. Nicholson DJ (2010) Biological atomism and cell theory. Stud Hist Philos Biol Biomed Sci 41(3):202–211. https://doi.org/10.1016/j.shpsc.2010.07.009

    Article  PubMed  Google Scholar 

  7. Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153(1):17–37. https://doi.org/10.1016/j.cell.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  8. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW (2013) Cancer genome landscapes. Science (New York, NY) 339(6127):1546–1558. https://doi.org/10.1126/science.1235122

    Article  CAS  Google Scholar 

  9. Bizzarri M, Cucina A (2016) SMT and TOFT: why and how they are opposite and incompatible paradigms. Acta Biotheor 64(3):221–239. https://doi.org/10.1007/s10441-016-9281-4

    Article  PubMed  Google Scholar 

  10. Nicholson DJ (2012) The concept of mechanism in biology. Stud Hist Philos Biol Biomed Sci 43(1):152–163. https://doi.org/10.1016/j.shpsc.2011.05.014

    Article  PubMed  Google Scholar 

  11. Bizzarri M, Palombo A, Cucina A (2013) Theoretical aspects of systems biology. Prog Biophys Mol Biol 112(1–2):33–43. https://doi.org/10.1016/j.pbiomolbio.2013.03.019

    Article  PubMed  Google Scholar 

  12. Bertolaso M (2016) Philosophy of cancer: a dynamic and relational view. Springer, New York

    Book  Google Scholar 

  13. Esfeld M (2003) Do relations require underlying intrinsic properties?—a physical argument for a metaphysics of relations. Metaphysica 4(1):5–25

    Google Scholar 

  14. Boem F, Ratti E, Andreoletti M, Boniolo G (2016) Why genes are like lemons. Stud Hist Philos Biol Biomed Sci 57:88–95. https://doi.org/10.1016/j.shpsc.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  15. Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genetics 5(2):101–113. https://doi.org/10.1038/nrg1272

    Article  PubMed  Google Scholar 

  16. Wolff J (2011) Do objects depend on structures? Br J Philos Sci 63(3):607–625. https://doi.org/10.1093/bjps/axr041

    Article  Google Scholar 

  17. Craver CF (2016) The explanatory power of network models. Philos Sci 83(5):698–709

    Article  Google Scholar 

  18. Palumbo MC et al (2005) Functional essentiality from topology features in metabolic networks: a case study in yeast. FEBS Lett 579(21):4642–4646

    Article  CAS  PubMed  Google Scholar 

  19. Palumbo MC et al (2007) Essentiality is an emergent property of metabolic network wiring. FEBS Lett 581(13):2485–2489

    Article  CAS  PubMed  Google Scholar 

  20. Bertolaso M, Giuliani A, Filippi S (2013) The mesoscopic level and its epistemological relevance in systems biology, Recent advances in systems biology. Nova Science Publishers, Inc., New York, pp 19–36

    Google Scholar 

  21. Giuliani A (2010) Collective motions and specific effectors: a statistical mechanics perspective on biological regulation. BMC Genomics 11(Suppl 1):S2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99(1):31–68

    Article  CAS  PubMed  Google Scholar 

  23. Bissell MJ et al (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70(9–10):537–546

    Article  PubMed  PubMed Central  Google Scholar 

  24. Correia AL, Bissell MJ (2012) The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat 15(1–2):39–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boogerd FC et al (2005) Emergence and its place in nature: a case study of biochemical networks. Synthese 145(1):131–164

    Article  Google Scholar 

  26. Sonnenschein C, Soto AM (1999) The society of cells: cancer and control of cell proliferation. Springer, New York

    Google Scholar 

  27. Soto AM, Sonnenschein C (2004) The somatic mutation theory of cancer: growing problems with the paradigm? BioEssays 26(10):1097–1107

    Article  CAS  PubMed  Google Scholar 

  28. Jaffe L (2005) Response to paper by Henry Harris. BioEssays 27(11):1206

    Article  PubMed  Google Scholar 

  29. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33

    Article  CAS  PubMed  Google Scholar 

  30. Heng HHQ et al (2006) Cancer progression by non-clonal chromosome aberrations. J Cell Biochem 98(6):1424–1435

    Article  CAS  PubMed  Google Scholar 

  31. Harris DP et al (2005) Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. J Immunol 174(11):6781–6790

    Article  CAS  PubMed  Google Scholar 

  32. Huang A et al (2002) Serum tryptophan decrease correlates with immune activation and impaired quality of life in colorectal cancer. Br J Cancer 86(11):1691–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martien S, Abbadie C (2007) Acquisition of oxidative DNA damage during senescence: the first step toward carcinogenesis? Ann N Y Acad Sci 1119:51–63

    Article  CAS  PubMed  Google Scholar 

  34. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant tera-tocarcinoma cells. Proc Natl Acad Sci U S A 72:3585–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hochedlinger K, Blelloch R, Brennan C, Yamada Y, Kim M, Chin L, Jaenisch R (2004) Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev 18:1875–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kenny PA, Bissell MJ (2003) Tumor reversion: correction of malignant behaviour by microenvironmental cues. Int J Cancer 107:688–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lotem J, Sachs L (2002) Epigenetics wins over genetics: induction of differentiation in tumor cells. Semin Cancer Biol 12:339–346

    Article  CAS  PubMed  Google Scholar 

  38. Sharpless NE, De Pinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8:703–713

    Article  CAS  PubMed  Google Scholar 

  39. Oakley EJ, Van Zant G (2007) Unraveling the complex regulation of stem cells: implications for aging and cancer. Leukemia 21:612–621

    CAS  PubMed  Google Scholar 

  40. Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774

    Article  CAS  PubMed  Google Scholar 

  41. Soto AM, Maffini MV, Sonnenschein C (2008) Neoplasia as development gone awry: the role of endocrine disruptors. Int J Androl 31(2):288–293

    Article  CAS  PubMed  Google Scholar 

  42. Biava, P. M. (1999). Complexity and cancer. Leadership Medica 1. Vedi (accesso di marzo 2008)

    Google Scholar 

  43. Biava PM (2002) Complessità e biologia. Il cancro come patologia della comunicazione. Mondadori, Milano

    Google Scholar 

  44. Abbs S, Bussoli T, Kavalier F (2004) Nature encyclopaedia of the human genome. BJM 328:172

    Article  Google Scholar 

  45. Marker PC (2008) Does prostate cancer co-opt the developmental program? Differentiation 76:736–744

    Article  CAS  PubMed  Google Scholar 

  46. Soto AM, Sonnenschein C (2011) The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. BioEssays 33(5):332–340

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rubin H (2011) Fields and field cancerization: the preneoplastic origins of cancer: asymptomatic hyperplastic fields are precursors of neoplasia, and their progression to tumors can be tracked by saturation density in culture. BioEssays 33(3):224–231

    Article  PubMed  Google Scholar 

  48. Capp J-P (2005) Stochastic gene expression, disruption of tissue averaging effects and cancer as a disease of development. BioEssays 27(12):1277–1285

    Article  CAS  PubMed  Google Scholar 

  49. Maitra A et al (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37(10):1099–1103

    Article  CAS  PubMed  Google Scholar 

  50. Prehn RT (1994) Cancers beget mutations versus mutations beget cancers. Cancer Res 54(20):5296–5300

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Bertolaso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bertolaso, M., Ratti, E. (2018). Conceptual Challenges in the Theoretical Foundations of Systems Biology. In: Bizzarri, M. (eds) Systems Biology. Methods in Molecular Biology, vol 1702. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7456-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7456-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7455-9

  • Online ISBN: 978-1-4939-7456-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics