Skip to main content

NMR Spectroscopy Approach to Study the Structure, Orientation, and Mechanism of the Multidrug Exporter EmrE

  • Protocol
  • First Online:
Bacterial Multidrug Exporters

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1700))

Abstract

Multidrug exporters are a class of membrane proteins that remove antibiotics from the cytoplasm of bacteria and in the process confer multidrug resistance to the organism. This chapter outlines the sample preparation and optimization of oriented solid-state NMR experiments applied to the study of structure and dynamics for the model transporter EmrE from the small multidrug resistance (SMR) family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146. https://doi.org/10.1146/annurev.biochem.78.082907.145923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nikaido H, Pages JM (2012) Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 36(2):340–363. https://doi.org/10.1111/j.1574-6976.2011.00290.x

    Article  CAS  PubMed  Google Scholar 

  3. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 4:251–259

    Article  Google Scholar 

  4. Du D, van Veen HW, Murakami S et al (2015) Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol 33:76–91. https://doi.org/10.1016/j.sbi.2015.07.015

    Article  CAS  PubMed  Google Scholar 

  5. Traaseth NJ, Shi L, Verardi R et al (2009) Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci U S A 106(25):10165–10170. https://doi.org/10.1073/pnas.0904290106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vostrikov Vitaly V, Grant Christopher V, Opella Stanley J et al (2011) On the combined analysis of (2)H and (15)N/(1)H solid-state NMR data for determination of transmembrane peptide orientation and dynamics. Biophys J 101(12):2939–2947. https://doi.org/10.1016/j.bpj.2011.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marassi FM, Opella SJ (2000) A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson 144(1):150–155. https://doi.org/10.1006/jmre.2000.2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cross TA (1986) A solid state nuclear magnetic resonance approach for determining the structure of gramicidin a without model fitting. Biophys J 49(1):124–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Denny J, Tian C et al (2000) Imaging membrane protein helical wheels. J Magn Reson 144(1):162–167. https://doi.org/10.1006/jmre.2000.2037

    Article  CAS  PubMed  Google Scholar 

  10. Buffy JJ, Traaseth NJ, Mascioni A et al (2006) Two-dimensional solid-state NMR reveals two topologies of sarcolipin in oriented lipid bilayers. Biochemistry 45(36):10939–10946. https://doi.org/10.1021/bi060728d

    Article  CAS  PubMed  Google Scholar 

  11. Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104(8):3587–3606. https://doi.org/10.1021/cr0304121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clark NA, Rothschild KJ, Luippold DA et al (1980) Surface-induced lamellar orientation of multilayer membrane arrays. Theoretical analysis and a new method with application to purple membrane fragments. Biophys J 31(1):65–96. https://doi.org/10.1016/S0006-3495(80)85041-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moll F 3rd, Cross TA (1990) Optimizing and characterizing alignment of oriented lipid bilayers containing gramicidin D. Biophys J 57(2):351–362. https://doi.org/10.1016/S0006-3495(90)82536-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanders Ii CR, Hare BJ, Howard KP et al (1994) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog Nucl Magn Reson Spectrosc 26(Part 5):421–444. https://doi.org/10.1016/0079–6565(94)80012-X

    Article  Google Scholar 

  15. Song Z, Kovacs FA, Wang J et al (2000) Transmembrane domain of M2 protein from influenza a virus studied by solid-state 15N polarization inversion spin exchange at magic angle NMR. Biophys J 79(2):767–775. https://doi.org/10.1016/S0006-3495(00)76334-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Traaseth NJ, Verardi R, Torgersen KD et al (2007) Spectroscopic validation of the pentameric structure of phospholamban. Proc Natl Acad Sci U S A 104(37):14676–14681. https://doi.org/10.1073/pnas.0701016104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Angelis AA, Opella SJ (2007) Bicelle samples for solid-state NMR of membrane proteins. Nat Protoc 2(10):2332–2338

    Article  PubMed  Google Scholar 

  18. Sanders CR, Schwonek JP (1992) Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry 31(37):8898–8905. https://doi.org/10.1021/bi00152a029

    Article  CAS  PubMed  Google Scholar 

  19. Marcotte I, Auger M (2005) Bicelles as model membranes for solid- and solution-state NMR studies of membrane peptides and proteins. Concepts Magn Reson A 24A(1):17–37. https://doi.org/10.1002/cmr.a.20025

    Article  CAS  Google Scholar 

  20. Warschawski DE, Arnold AA, Beaugrand M et al (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta Biomembr 1808(8):1957–1974. https://doi.org/10.1016/j.bbamem.2011.03.016

    Article  CAS  Google Scholar 

  21. Prosser RS, Hwang JS, Vold RR (1998) Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system. Biophys J 74(5):2405–2418. https://doi.org/10.1016/S0006-3495(98)77949-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamamoto K, Pearcy P, Ramamoorthy A (2014) Bicelles exhibiting magnetic alignment for a broader range of temperatures: a solid-state NMR study. Langmuir 30(6):1622–1629. https://doi.org/10.1021/la404331t

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto K, Pearcy P, Lee D-K et al (2015) Temperature-resistant bicelles for structural studies by solid-state NMR spectroscopy. Langmuir 31(4):1496–1504. https://doi.org/10.1021/la5043876

    Article  CAS  PubMed  Google Scholar 

  24. Triba MN, Devaux PF, Warschawski DE (2006) Effects of lipid chain length and unsaturation on bicelles stability. A phosphorus NMR study. Biophys J 91(4):1357–1367. https://doi.org/10.1529/biophysj.106.085118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu C, Ramamoorthy A, Opella S (1994) High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J Magn Reson 109A:270–272

    Article  Google Scholar 

  26. Ramamoorthy A, Wei Y, Lee D-K (2004) PISEMA solid-state NMR spectroscopy. In: Annual reports on NMR spectroscopy, vol 52. Academic Press, London, pp 1–52. https://doi.org/10.1016/S0066-4103(04)52001-X

    Chapter  Google Scholar 

  27. Gayen A, Banigan JR, Traaseth NJ (2013) Ligand-induced conformational changes of the multidrug resistance transporter EmrE probed by oriented solid-state NMR spectroscopy. Angew Chem Int Ed 52(39):10321–10324. https://doi.org/10.1002/anie.201303091

    Article  CAS  Google Scholar 

  28. Cho M-K, Gayen A, Banigan JR et al (2014) Intrinsic conformational plasticity of native EmrE provides a pathway for multidrug resistance. J Am Chem Soc 136(22):8072–8080. https://doi.org/10.1021/ja503145x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gor’kov PL, Chekmenev EY, Li C et al (2007) Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J Magn Reson 185(1):77–93. https://doi.org/10.1016/j.jmr.2006.11.008

    Article  PubMed  Google Scholar 

  30. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. https://doi.org/10.1007/bf00197809

    Article  CAS  PubMed  Google Scholar 

  31. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142(1):97–101. https://doi.org/10.1006/jmre.1999.1896

    Article  CAS  PubMed  Google Scholar 

  32. Bielecki ACK, De Groot HJM, Griffin RG, Levitt MH (1990) Frequency-switched Lee-Goldburg sequence in solids. Adv Magn Reson 14:111–150

    Article  Google Scholar 

  33. Goldburg WG, Lee M (1965) Nuclear magnetic resonance line narrowing by a rotation RF field. Phys Rev 140:1261–1271

    Article  Google Scholar 

  34. Vinogradov E, Madhu PK, Vega S (1999) High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee–Goldburg experiment. Chem Phys Lett 314(5–6):443–450. https://doi.org/10.1016/S0009-2614(99)01174-4

    Article  CAS  Google Scholar 

  35. Fu R, Tian C, Cross TA (2002) NMR spin locking of proton magnetization under a frequency-switched Lee–Goldburg pulse sequence. J Magn Reson 154(1):130–135. https://doi.org/10.1006/jmre.2001.2468

    Article  CAS  PubMed  Google Scholar 

  36. Yamamoto K, Lee DK, Ramamoorthy A (2005) Broadband-PISEMA solid-state NMR spectroscopy. Chem Phys Lett 407(4–6):289–293. https://doi.org/10.1016/j.cplett.2005.03.082

    Article  CAS  Google Scholar 

  37. Gopinath T, Traaseth NJ, Mote K et al (2010) Sensitivity enhanced heteronuclear correlation spectroscopy in multidimensional solid-state NMR of oriented systems via chemical shift coherences. J Am Chem Soc 132(15):5357–5363. https://doi.org/10.1021/ja905991s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Veglia TGaG (2009) Sensitivity enhancement in static solid-state NMR experiments via single- and multiple-quantum dipolar coherences. J Am Chem Soc 131(16):5754–5756

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gopinath T, Veglia G (2010) Improved resolution in dipolar NMR spectra using constant time evolution PISEMA experiment. Chem Phys Lett 494(1–3):104–110. https://doi.org/10.1016/j.cplett.2010.05.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koroloff SN, Nevzorov AA (2015) Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles. J Magn Reson 256:14–22. https://doi.org/10.1016/j.jmr.2015.03.016

    Article  CAS  PubMed  Google Scholar 

  41. Tang W, Nevzorov AA (2011) Repetitive cross-polarization contacts via equilibration-re-equilibration of the proton bath: sensitivity enhancement for NMR of membrane proteins reconstituted in magnetically aligned bicelles. J Magn Reson 212(1):245–248. https://doi.org/10.1016/j.jmr.2011.06.028

    Article  CAS  PubMed  Google Scholar 

  42. Bertram R, Quine JR, Chapman MS et al (2000) Atomic refinement using orientational restraints from solid-state NMR. J Magn Reson 147(1):9–16. https://doi.org/10.1006/jmre.2000.2193

    Article  CAS  PubMed  Google Scholar 

  43. De Angelis AA, Howell SC, Nevzorov AA et al (2006) Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy. J Am Chem Soc 128(37):12256–12267. https://doi.org/10.1021/ja063640w

    Article  PubMed  PubMed Central  Google Scholar 

  44. Traaseth NJ, Gopinath T, Veglia G (2010) On the performance of spin diffusion NMR techniques in oriented solids: prospects for resonance assignments and distance measurements from separated local field experiments. J Phys Chem B 114(43):13872–13880. https://doi.org/10.1021/jp105718r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nevzorov AA (2008) Mismatched Hartmann−Hahn conditions cause proton-mediated intermolecular magnetization transfer between dilute low-spin nuclei in NMR of static solids. J Am Chem Soc 130(34):11282–11283. https://doi.org/10.1021/ja804326b

    Article  CAS  PubMed  Google Scholar 

  46. Fleishman SJ, Harrington SE, Enosh A et al (2006) Quasi-symmetry in the cryo-EM structure of EmrE provides the key to modeling its transmembrane domain. J Mol Biol 364(1):54–67. https://doi.org/10.1016/j.jmb.2006.08.072

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y-J, Pornillos O, Lieu S et al (2007) X-ray structure of EmrE supports dual topology model. Proc Natl Acad Sci U S A 104(48):18999–19004. https://doi.org/10.1073/pnas.0709387104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. deAzevedo ER, Bonagamba TJ, Schmidt-Rohr K (2000) Pure-exchange solid-state NMR. J Magn Reson 142(1):86–96. https://doi.org/10.1006/jmre.1999.1918

    Article  CAS  PubMed  Google Scholar 

  49. Gayen A, Leninger M, Traaseth NJ (2016) Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE. Nat Chem Biol 12(3):141–145. https://doi.org/10.1038/nchembio.1999. http://www.nature.com/nchembio/journal/v12/n3/abs/nchembio.1999.html—supplementary-information

  50. Lu GJ, Opella SJ (2014) Resonance assignments of a membrane protein in phospholipid bilayers by combining multiple strategies of oriented sample solid-state NMR. J Biomol NMR 58(1):69–81. https://doi.org/10.1007/s10858-013-9806-y

    Article  CAS  PubMed  Google Scholar 

  51. Banigan JR, Gayen A, Traaseth NJ (2015) Correlating lipid bilayer fluidity with sensitivity and resolution of polytopic membrane protein spectra by solid-state NMR spectroscopy. Biochim Biophys Acta 1848(1, Part B):334–341. https://doi.org/10.1016/j.bbamem.2014.05.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH (R01AI108889) and NSF (MCB1506420). M.L. acknowledges support from a Margaret-Strauss Kramer Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel J. Traaseth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Leninger, M., Traaseth, N.J. (2018). NMR Spectroscopy Approach to Study the Structure, Orientation, and Mechanism of the Multidrug Exporter EmrE. In: Yamaguchi, A., Nishino, K. (eds) Bacterial Multidrug Exporters. Methods in Molecular Biology, vol 1700. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7454-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7454-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7452-8

  • Online ISBN: 978-1-4939-7454-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics