Skip to main content

Crystallographic Analysis of MATE-Type Multidrug Exporter with Its Inhibitors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1700))

Abstract

Multidrug exporters expressed in pathogens efflux substrate drugs such as antibiotics, and thus, the development of inhibitors against them has eagerly been anticipated. Furthermore, the crystal structures of multidrug exporters with their inhibitors provide novel insights into the inhibitory mechanism and the development of more specific and effective inhibitors. We previously reported the complex structures of the Multidrug And Toxic compound Extrusion (MATE)-type multidrug exporter with the macrocyclic peptides, which inhibit the efflux of substrates by the MATE-type multidrug exporter (Tanaka et al., Nature 496:247–251, 2013). In this chapter, we describe methodologies of the screening and synthesis of macrocyclic peptides as inhibitors, as well as the purification, crystallization, and structure determination of the complexes of the MATE-type multidrug exporter with its inhibitors.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dawson RJP, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185. https://doi.org/10.1038/nature05155

    Article  CAS  PubMed  Google Scholar 

  2. Murakami S, Nakashima R, Yamashita E et al (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173–179. https://doi.org/10.2142/biophys.47.309

    Article  CAS  PubMed  Google Scholar 

  3. Brown MH, Paulsen IT, Skurray RA (1999) The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 31:394–395. https://doi.org/10.1046/j.1365-2958.1999.01162.x

    Article  CAS  PubMed  Google Scholar 

  4. He G, Kuroda T, Mima T et al (2004) An H+-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J Bacteriol 186:262–265. https://doi.org/10.1128/JB.186.1.262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaatz GW, Mcaleese F, Seo SM (2005) Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chmother 49:1857–1864. https://doi.org/10.1128/AAC.49.5.1857

    Article  CAS  Google Scholar 

  6. McAleese F, Petersen P, Ruzin A et al (2005) A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 49:1865–1871. https://doi.org/10.1128/AAC.49.5.1865-1871.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nakashima R, Sakurai K, Yamasaki S et al (2013) Structural basis for the inhibition of bacterial multidrug exporters. Nature 500:102–106. https://doi.org/10.1038/nature12300

    Article  CAS  PubMed  Google Scholar 

  8. He X, Szewczyk P, Karyakin A et al (2010) Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467:991–994. https://doi.org/10.1038/nature09408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu M, Symersky J, Radchenko M et al (2013) Structures of a Na+-coupled, substrate-bound MATE multidrug transporter. Proc Natl Acad Sci U S A 110:2099–2104. https://doi.org/10.1073/pnas.1219901110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu M, Radchenko M, Symersky J et al (2013) Structural insights into H+-coupled multidrug extrusion by a MATE transporter. Nat Struct Mol Biol 20:1310–1317. https://doi.org/10.1038/nsmb.2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Radchenko M, Symersky J, Nie R, Lu M (2015) Structural basis for the blockade of MATE multidrug efflux pumps. Nat Commun 6:7995. https://doi.org/10.1038/ncomms8995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mousa JJ, Yang Y, Tomkovich S et al (2016) MATE transport of the E. coli-derived genotoxin colibactin. Nat Microbiol 1:15009. https://doi.org/10.1038/nmicrobiol.2015.9

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka Y, Hipolito CJ, Maturana AD et al (2013) Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496:247–251. https://doi.org/10.1038/nature12014

    Article  CAS  PubMed  Google Scholar 

  14. Hipolito CJ, Tanaka Y, Katoh T et al (2013) A macrocyclic peptide that serves as a cocrystallization ligand and inhibits the function of a MATE family transporter. Molecules 18:10514–10530. https://doi.org/10.3390/molecules180910514

    Article  CAS  PubMed  Google Scholar 

  15. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94:12297–12302. https://doi.org/10.1073/pnas.94.23.12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H (1997) In vitro virus: bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett 414:405–408. https://doi.org/10.1016/S0014-5793(97)01026-0

    Article  CAS  PubMed  Google Scholar 

  17. Shimizu Y, Inoue A, Tomari Y et al (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755. https://doi.org/10.1038/90802

    Article  CAS  PubMed  Google Scholar 

  18. Shimizu Y, Kanamori T, Ueda T (2005) Protein synthesis by pure translation systems. Methods 36:299–304. https://doi.org/10.1016/j.ymeth.2005.04.006

    Article  CAS  PubMed  Google Scholar 

  19. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535. https://doi.org/10.1073/pnas.93.25.14532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins for structure-function studies using lipidic mesophases. Nat Protoc 4:706–731. https://doi.org/10.1007/978-94-007-6232-9-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hirata K, Kawano Y, Ueno G et al (2013) Achievement of protein micro-crystallography at SPring-8 beamline BL32XU. J Phys Conf Ser 425:012002. https://doi.org/10.1088/1742-6596/425/1/012002

    Article  Google Scholar 

  22. Flot D, Mairs T, Giraud T et al (2010) The ID23-2 structural biology microfocus beamline at the ESRF. J Synchrotron Radiat 17:107–118. https://doi.org/10.1107/S0909049509041168

    Article  CAS  PubMed  Google Scholar 

  23. Xu H, Smith AB, Sahinidis NV, Weeks CM (2008) SnB version 2.3: triplet sieve phasing for centrosymmetric structures. J Appl Crystallogr 41:644–646. https://doi.org/10.1107/S0021889808007966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vonrhein C, Blanc E, Roversi P, Bricogne G (2007) Automated structure solution with autoSHARP. Methods Mol Biol 364:215–230. https://doi.org/10.1385/1-59745-266-1:215

    CAS  PubMed  Google Scholar 

  25. Eswar N, Webb B, Marti-Renom MA et al (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci. https://doi.org/10.1002/0471140864.ps0209s50

  26. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr 66:486–501. https://doi.org/10.1107/S0907444910007493

    Article  CAS  Google Scholar 

  27. Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biol Crystallogr 66:213–221. https://doi.org/10.1107/S0907444909052925

    Article  CAS  Google Scholar 

  28. Smart OS, TO W, Flensburg C et al (2012) Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr Sect D Biol Crystallogr 68:368–380. https://doi.org/10.1107/S0907444911056058

    Article  CAS  Google Scholar 

  29. McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674. https://doi.org/10.1107/S0021889807021206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681. https://doi.org/10.1016/j.str.2006.01.013

    Article  CAS  PubMed  Google Scholar 

  31. Hattori M, Hibbs RE, Gouaux E (2012) A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20:1293–1299. https://doi.org/10.1016/j.str.2012.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goto Y, Katoh T, Suga H (2011) Flexizymes for genetic code reprogramming. Nat Protoc 6:779–790. https://doi.org/10.1038/nprot.2011.331

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Nureki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kusakizako, T., Tanaka, Y., Hipolito, C.J., Suga, H., Nureki, O. (2018). Crystallographic Analysis of MATE-Type Multidrug Exporter with Its Inhibitors. In: Yamaguchi, A., Nishino, K. (eds) Bacterial Multidrug Exporters. Methods in Molecular Biology, vol 1700. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7454-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7454-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7452-8

  • Online ISBN: 978-1-4939-7454-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics