Skip to main content

Combine Phage Antibody Display Library Selection on Patient Tissue Specimens with Laser Capture Microdissection to Identify Novel Human Antibodies Targeting Clinically Relevant Tumor Antigens

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1701))

Abstract

A functional approach to generate tumor-targeting human monoclonal antibodies is through selection of phage antibody display libraries directly on tumor cells. Although technically convenient, the use of cancer cell lines for the selection has limitations as those cell lines often undergo genetic and epigenetic changes during prolonged in vitro culture and alter their cell surface antigen expression profile. The key is to develop a technology that allows selection of phage antibody display libraries on tumor cells in situ residing in their natural tissue microenvironment. Laser capture microdissection (LCM) permits the precise procurement of tumor cells from human cancer patient tissue sections. Here, we describe a LCM-based method for selecting phage antibodies against tumor cells in situ using both fresh frozen and paraffin-embedded tissues. To restrict the selection to antibodies that bind internalizing epitopes, the method utilizes a polyclonal phage population pre-enriched for internalizing phage antibodies. The ability to recognize tumor cells in situ residing in their natural tissue microenvironment and to deliver payload intracellularly makes these LCM-selected antibodies attractive candidates for the development of targeted cancer therapeutics.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kobata A, Amano J (2005) Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 83:429–439

    Article  CAS  PubMed  Google Scholar 

  2. Birkle S, Zeng G, Gao L et al (2003) Role of tumor-associated gangliosides in cancer progression. Biochimie 85:455–463

    Article  CAS  PubMed  Google Scholar 

  3. Hakomori S (2001) Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv Exp Med Biol 491:369–402

    Article  CAS  PubMed  Google Scholar 

  4. Hanisch FG (2001) O-glycosylation of the mucin type. Biol Chem 382:143–149

    Article  CAS  PubMed  Google Scholar 

  5. Ugorski M, Laskowska A (2002) Sialyl Lewis (a): a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol 49:303–311

    CAS  PubMed  Google Scholar 

  6. Liu B, Conrad F, Cooperberg MR et al (2004) Mapping tumor epitope space by direct selection of single-chain Fv antibody libraries on prostate cancer cells. Cancer Res 64:704–710

    Article  CAS  PubMed  Google Scholar 

  7. Ruan W, Sassoon A, An F et al (2006) Identification of clinically significant tumor antigens by selecting phage antibody library on tumor cells in situ using laser capture microdissection. Mol Cell Proteomics 5:2364–2373. https://doi.org/10.1074/mcp.M600246-MCP200

    Article  CAS  PubMed  Google Scholar 

  8. An F, Drummond DC, Wilson S et al (2008) Targeted drug delivery to mesothelioma cells using functionally selected internalizing human single-chain antibodies. Mol Cancer Ther 7:569–578. https://doi.org/10.1158/1535-7163.MCT-07-2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bidlingmaier S, He J, Wang Y et al (2009) Identification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma. Cancer Res 69:1570–1577. https://doi.org/10.1158/0008-5472.CAN-08-1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bidlingmaier S, Su Y, Liu B (2015) Combining phage and yeast cell surface antibody display to identify novel cell type-selective internalizing human monoclonal antibodies. Methods Mol Biol 1319:51–63. https://doi.org/10.1007/978-1-4939-2748-7_3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ha KD, Bidlingmaier SM, Zhang Y et al (2014) High-content analysis of antibody phage-display library selection outputs identifies tumor selective macropinocytosis-dependent rapidly internalizing antibodies. Mol Cell Proteomics. https://doi.org/10.1074/mcp.M114.039768

  12. Zhu X, Bidlingmaier S, Hashizume R et al (2010) Identification of internalizing human single-chain antibodies targeting brain tumor sphere cells. Mol Cancer Ther 9:2131–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sherbenou DW, Aftab BT, Su Y et al (2016) Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells. J Clin Invest 126:4640–4653. https://doi.org/10.1172/JCI85856

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bidlingmaier S, Zhu X, Liu B (2008) The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med (Berl) 86:1025–1032. https://doi.org/10.1007/s00109-008-0357-8

    Article  CAS  Google Scholar 

  15. Marks J, Hoogenboom H, Bonnert T et al (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222:581–597

    Article  CAS  PubMed  Google Scholar 

  16. McCafferty J, Griffiths A, Winter G et al (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    Article  CAS  PubMed  Google Scholar 

  17. O'Connell D, Becerril B, Roy-Burman A et al (2002) Phage versus phagemid libraries for generation of human monoclonal antibodies. J Mol Biol 321:49–56

    Article  PubMed  Google Scholar 

  18. Hoogenboom HR, Winter G (1992) By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol 227:381–388

    Article  CAS  PubMed  Google Scholar 

  19. de Haard HJ, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruine AP, Arends JW, Hoogenboom HR (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274:18218–18230

    Article  PubMed  Google Scholar 

  20. Clackson T, Hoogenboom HR, Griffiths AD et al (1991) Making antibody fragments using phage display libraries. Nature 352:624–628. https://doi.org/10.1038/352624a0

    Article  CAS  PubMed  Google Scholar 

  21. Winter G, Griffiths A, Hawkins R et al (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455

    Article  CAS  PubMed  Google Scholar 

  22. Barbas CF 3rd, Kang AS, Lerner RA et al (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88:7978–7982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huston JS, George AJ (2001) Engineered antibodies take center stage. Hum Antibodies 10:127–142

    CAS  PubMed  Google Scholar 

  24. Janda KD, Lo CH, Li T et al (1994) Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc Natl Acad Sci U S A 91:2532–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheets MD, Amersdorfer P, Finnern R et al (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A 95:6157–6162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu B, Marks JD (2000) Applying phage antibodies to proteomics: selecting single chain Fv antibodies to antigens blotted on nitrocellulose. Anal Biochem 286:119–128. https://doi.org/10.1006/abio.2000.4788

    Article  CAS  PubMed  Google Scholar 

  27. Liu B, Huang L, Sihlbom C et al (2002) Towards proteome-wide production of monoclonal antibody by phage display. J Mol Biol 315:1063–1073

    Article  CAS  PubMed  Google Scholar 

  28. Bonner RF, Emmert-Buck M, Cole K et al (1997) Laser capture microdissection: molecular analysis of tissue. Science 278:1481,1483

    Article  PubMed  Google Scholar 

  29. Emmert-Buck MR, Bonner RF, Smith PD et al (1996) Laser capture microdissection. Science 274:998–1001

    Article  CAS  PubMed  Google Scholar 

  30. Best CJ, Emmert-Buck MR (2001) Molecular profiling of tissue samples using laser capture microdissection. Expert Rev Mol Diagn 1:53–60. https://doi.org/10.1586/14737159.1.1.53

    Article  CAS  PubMed  Google Scholar 

  31. Mukherjee S, Rodriguez-Canales J, Hanson J et al (2013) Proteomic analysis of frozen tissue samples using laser capture microdissection. Methods Mol Biol 1002:71–83. https://doi.org/10.1007/978-1-62703-360-2_6

    Article  CAS  PubMed  Google Scholar 

  32. Espina V, Wulfkuhle JD, Calvert VS et al (2006) Laser-capture microdissection. Nat Protoc 1:586–603. https://doi.org/10.1038/nprot.2006.85

    Article  CAS  PubMed  Google Scholar 

  33. Espina V, Milia J, Wu G et al (2006) Laser capture microdissection. Methods Mol Biol 319:213–229. https://doi.org/10.1007/978-1-59259-993-6_10

    Article  CAS  PubMed  Google Scholar 

  34. Johann DJ, Rodriguez-Canales J, Mukherjee S et al (2009) Approaching solid tumor heterogeneity on a cellular basis by tissue proteomics using laser capture microdissection and biological mass spectrometry. J Proteome Res 8:2310–2318. https://doi.org/10.1021/pr8009403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu H, Jin D, Kapila YL (2004) Application of laser capture microdissection to phage display peptide library screening. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98:692–697. https://doi.org/10.1016/S1079210404006134

    Article  PubMed  Google Scholar 

  36. Kubo N, Akita N, Shimizu A et al (2008) Identification of oligopeptide binding to colon cancer cells separated from patients using laser capture microdissection. J Drug Target 16:396–404. https://doi.org/10.1080/10611860802088796

    Article  CAS  PubMed  Google Scholar 

  37. Sun Y, Shukla GS, Kennedy GG et al (2009) Biopanning phage-display libraries on small tissue sections captured by laser capture microdissection. J Biotechnol Res 1:55–63

    CAS  Google Scholar 

  38. Sun Y, Shukla GS, Weaver D et al (2009) Phage-display selection on tumor histological specimens with laser capture microdissection. J Immunol Methods 347:46–53. https://doi.org/10.1016/j.jim.2009.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roth A, Drummond DC, Conrad F et al (2007) Anti-CD166 single chain antibody-mediated intracellular delivery of liposomal drugs to prostate cancer cells. Mol Cancer Ther 6:2737–2746

    Article  CAS  PubMed  Google Scholar 

  40. Iyer AK, Su Y, Feng J et al (2011) The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma. Biomaterials 32:2605–2613. https://doi.org/10.1016/j.biomaterials.2010.11.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Work in our laboratory is supported by grants from the National Institutes of Health/National Cancer Institute (R01 CA171315, R01 CA118919, and R01 CA129491). NKL received fellowship support from Basic Science Research Program of the National Research Foundation of Korea (NRF) that is funded by the Ministry of Education, Science and Technology (2013R1A6A3A03060495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Su, Y., Bidlingmaier, S., Lee, NK., Liu, B. (2018). Combine Phage Antibody Display Library Selection on Patient Tissue Specimens with Laser Capture Microdissection to Identify Novel Human Antibodies Targeting Clinically Relevant Tumor Antigens. In: Hust, M., Lim, T. (eds) Phage Display. Methods in Molecular Biology, vol 1701. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7447-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7447-4_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7446-7

  • Online ISBN: 978-1-4939-7447-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics