Advertisement

Construction of Human Immune and Naive scFv Libraries

  • Jonas Kügler
  • Florian Tomszak
  • André Frenzel
  • Michael Hust
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1701)

Abstract

Antibody phage display is the most commonly used in vitro selection technology for the generation of human recombinant antibodies and has yielded thousands of useful antibodies for research, diagnostics, and therapy. The prerequisite for successful generation of antibodies using phage display is the construction of high-quality antibody gene libraries. Here, we give the detailed methods for the construction of human immune and naive scFv gene libraries.

Key words

Phage display Immune phage-display library Antibody gene library Naive phage-display library scFv Single-chain fragment variable (scFv) Human antibody phage-display library V-gene amplification Antibody gene amplification PMBC isolation 

Notes

Acknowledgments

This review is an updated and revised version of Ref. 56.

References

  1. 1.
    Reichert JM (2016) Therapeutic monoclonal antibodies approved or in review in the European Union or the United States. In: The Antibody Society. Accessed 24 Jun 2016 http://www.antibodysociety.org/news/approved-antibodies/
  2. 2.
    Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7:9–14. https://doi.org/10.4161/19420862.2015.989042 CrossRefPubMedGoogle Scholar
  3. 3.
    Dübel S (2007) Recombinant therapeutic antibodies. Appl Microbiol Biotechnol 74:723–729. https://doi.org/10.1007/s00253-006-0810-y CrossRefPubMedGoogle Scholar
  4. 4.
    Chatenoud L, Bluestone JA (2007) CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat rev Immunol 7:622–632. Doi: nri2134Google Scholar
  5. 5.
    Harriman G, Harper LK, Schaible TF (1999) Summary of clinical trials in rheumatoid arthritis using infliximab, an anti-TNFalpha treatment. Ann Rheum Dis 58(Suppl 1):I61–I64CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dalle S, Thieblemont C, Thomas L, Dumontet C (2008) Monoclonal antibodies in clinical oncology. Anti-cancer agents in medicinal chemistry 8:523–32. Doi: 18537534Google Scholar
  7. 7.
    Jones SE (2008) Metastatic breast cancer: the treatment challenge. Clin Breast Cancer 8:224–233. doi: R8180138H6520884CrossRefPubMedGoogle Scholar
  8. 8.
    Osbourn J, Groves M, Vaughan T (2005) From rodent reagents to human therapeutics using antibody guided selection. Methods 36:61–68. doi: S1046-2023(05)00016-2CrossRefPubMedGoogle Scholar
  9. 9.
    Getts DR, Getts MT, McCarthy DP, Chastain EML, Miller SD (2010) Have we overestimated the benefit of human(ized) antibodies? MAbs 2:682–694CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Harding FA, Stickler MM, Razo J, DuBridge RB (2010) The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2:256–265CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8:1177–1194. https://doi.org/10.1080/19420862.2016.1212149 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317CrossRefPubMedGoogle Scholar
  13. 13.
    Barbas CF, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88:7978–7982. Doi: 1896445CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M (1991) A surface expression vector for antibody screening. Gene 104:147–153CrossRefPubMedGoogle Scholar
  15. 15.
    Clackson T, Hoogenboom HR, Griffiths AD, Winter G (1991) Making antibody fragments using phage display libraries. Nature 352:624–628. Doi: 1907718CrossRefPubMedGoogle Scholar
  16. 16.
    Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (fab) heavy and light chains. Nucleic Acids Res 19:4133–4137. Doi: 1908075CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222:581–597. Doi: 1748994CrossRefPubMedGoogle Scholar
  18. 18.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554CrossRefPubMedGoogle Scholar
  19. 19.
    Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, van Hegelsom R, Neer NC, Nastri HG, Rondon IJ, Leeds JA, Hufton SE, Huang L, Kashin I, Devlin M, Kuang G, Steukers M, Viswanathan M, Nixon AE, Sexton DJ, Hoogenboom HR, Ladner RC (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344–348. Doi: nbt1067CrossRefPubMedGoogle Scholar
  20. 20.
    Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21:484–490CrossRefPubMedGoogle Scholar
  21. 21.
    Hust M, Dübel S (2005) Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol Biol 295:71–96PubMedGoogle Scholar
  22. 22.
    Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94:4937–4942. Doi: 9144168CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    He M, Taussig MJ (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 25:5132–5134. Doi: 9396828CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94:12297–12302. Doi: 9356443CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557. Doi: 9181578CrossRefPubMedGoogle Scholar
  26. 26.
    King DJ, Bowers PM, Kehry MR, Horlick RA (2014) Mammalian cell display and somatic hypermutation in vitro for human antibody discovery. Curr Drug Discov Technol 11:56–64CrossRefPubMedGoogle Scholar
  27. 27.
    Trott M, Weiβ S, Antoni S, Koch J, von Briesen H, Hust M, Dietrich U (2014) Functional characterization of two scFv-fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody. PLoS One 9:e97478. https://doi.org/10.1371/journal.pone.0097478 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Arakawa M, Yamashiro T, Uechi G, Tadano M, Nishizono A (2007) Construction of human fab (gamma1/kappa) library and identification of human monoclonal fab possessing neutralizing potency against Japanese encephalitis virus. Microbiol Immunol 51:617–625CrossRefPubMedGoogle Scholar
  29. 29.
    Hust M, Dübel S (2004) Mating antibody phage display with proteomics. Trends Biotechnol 22:8–14CrossRefPubMedGoogle Scholar
  30. 30.
    Qi H, Lu H, Qiu H-J, Petrenko V, Liu A (2012) Phagemid vectors for phage display: properties, characteristics and construction. J Mol Biol 417:129–143. https://doi.org/10.1016/j.jmb.2012.01.038 CrossRefPubMedGoogle Scholar
  31. 31.
    Shirai H, Kidera A, Nakamura H (1999) H3-rules: identification of CDR-H3 structures in antibodies. FEBS Lett 455:188–197. Doi: 10428499CrossRefPubMedGoogle Scholar
  32. 32.
    Hust M, Meyer T, Voedisch B, Rülker T, Thie H, El-Ghezal A, Kirsch MI, Schütte M, Helmsing S, Meier D, Schirrmann T, Dübel S (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152:159–170. https://doi.org/10.1016/j.jbiotec.2010.09.945 CrossRefPubMedGoogle Scholar
  33. 33.
    Johansen LK, Albrechtsen B, Andersen HW, Engberg J (1995) pFab60: a new, efficient vector for expression of antibody fab fragments displayed on phage. Protein Eng 8:1063–1067. Doi: 8771188CrossRefPubMedGoogle Scholar
  34. 34.
    Little M, Welschof M, Braunagel M, Hermes I, Christ C, Keller A, Rohrbach P, Kürschner T, Schmidt S, Kleist C, Terness P (1999) Generation of a large complex antibody library from multiple donors. J Immunol Methods 231:3–9. Doi: 10648923CrossRefPubMedGoogle Scholar
  35. 35.
    Welschof M, Terness P, Kipriyanov SM, Stanescu D, Breitling F, Dörsam H, Dübel S, Little M, Opelz G (1997) The antigen-binding domain of a human IgG-anti-F(ab’)2 autoantibody. Proc Natl Acad Sci U S A 94:1902–1907. Doi: 9050877CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruïne AP, Arends JW, Hoogenboom HR (1999) A large non-immunized human fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274:18218–18230. Doi: 10373423CrossRefPubMedGoogle Scholar
  37. 37.
    McCafferty J, Fitzgerald KJ, Earnshaw J, Chiswell DJ, Link J, Smith R, Kenten J (1994) Selection and rapid purification of murine antibody fragments that bind a transition-state analog by phage display. Appl Biochem Biotechnol 47:157–171–173. Doi: 7944335CrossRefPubMedGoogle Scholar
  38. 38.
    Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14:309–314. Doi: 9630891CrossRefPubMedGoogle Scholar
  39. 39.
    Akamatsu Y, Cole MS, Tso JY, Tsurushita N (1993) Construction of a human Ig combinatorial library from genomic V segments and synthetic CDR3 fragments. J Immunol 151:4651–4659. Doi: 8409426PubMedGoogle Scholar
  40. 40.
    Hoogenboom HR, Winter G (1992) By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol 227:381–388. Doi: 1404359CrossRefPubMedGoogle Scholar
  41. 41.
    Nissim A, Hoogenboom HR, Tomlinson IM, Flynn G, Midgley C, Lane D, Winter G (1994) Antibody fragments from a “single pot” phage display library as immunochemical reagents. EMBO J 13:692–698. Doi: 7508862PubMedPubMedCentralGoogle Scholar
  42. 42.
    Barbas CF, Bain JD, Hoekstra DM, Lerner RA (1992) Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc Natl Acad Sci U S A 89:4457–4461. Doi: 1584777CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Desiderio A, Franconi R, Lopez M, Villani ME, Viti F, Chiaraluce R, Consalvi V, Neri D, Benvenuto E (2001) A semi-synthetic repertoire of intrinsically stable antibody fragments derived from a single-framework scaffold. J Mol Biol 310:603–615. Doi: 11439027CrossRefPubMedGoogle Scholar
  44. 44.
    Jirholt P, Ohlin M, Borrebaeck CA, Söderlind E (1998) Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework. Gene 215:471–476. Doi: 9714846CrossRefPubMedGoogle Scholar
  45. 45.
    Söderlind E, Strandberg L, Jirholt P, Kobayashi N, Alexeiva V, Aberg AM, Nilsson A, Jansson B, Ohlin M, Wingren C, Danielsson L, Carlsson R, Borrebaeck CA (2000) Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol 18:852–856. Doi: 10932154CrossRefPubMedGoogle Scholar
  46. 46.
    Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wölle J, Plückthun A, Virnekäs B (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296:57–86. Doi: 10656818CrossRefPubMedGoogle Scholar
  47. 47.
    Rothe C, Urlinger S, Löhning C, Prassler J, Stark Y, Jäger U, Hubner B, Bardroff M, Pradel I, Boss M, Bittlingmaier R, Bataa T, Frisch C, Brocks B, Honegger A, Urban M (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376:1182–1200. https://doi.org/10.1016/j.jmb.2007.12.018 CrossRefPubMedGoogle Scholar
  48. 48.
    Tiller T, Schuster I, Deppe D, Siegers K, Strohner R, Herrmann T, Berenguer M, Poujol D, Stehle J, Stark Y, Heßling M, Daubert D, Felderer K, Kaden S, Kölln J, Enzelberger M, Urlinger S (2013) A fully synthetic human fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5:445–470CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kügler J, Wilke S, Meier D, Tomszak F, Frenzel A, Schirrmann T, Dübel S, Garritsen H, Hock B, Toleikis L, Schütte M, Hust M (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10. https://doi.org/10.1186/s12896-015-0125-0 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hust M, Jostock T, Menzel C, Voedisch B, Mohr A, Brenneis M, Kirsch MI, Meier D, Dübel S (2007) Single chain fab (scFab) fragment. BMC Biotechnol 7:14CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Steinwand M, Droste P, Frenzel A, Hust M, Dübel S, Schirrmann T (2014) The influence of antibody fragment format on phage display based affinity maturation of IgG. MAbs 6:204–218. https://doi.org/10.4161/mabs.27227 CrossRefPubMedGoogle Scholar
  52. 52.
    Rondot S, Koch J, Breitling F, Dübel S (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19:75–78CrossRefPubMedGoogle Scholar
  53. 53.
    Soltes G, Hust M, Ng KKY, Bansal A, Field J, Stewart DIH, Dübel S, Cha S, Wiersma EJ (2007) On the influence of vector design on antibody phage display. J Biotechnol 127:626–637CrossRefPubMedGoogle Scholar
  54. 54.
    Pelat T, Hust M, Laffly E, Condemine F, Bottex C, Vidal D, Lefranc M-P, Dübel S, Thullier P (2007) High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 51:2758–2764CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kirsch M, Hülseweh B, Nacke C, Rülker T, Schirrmann T, Marschall H-J, Hust M, Dübel S (2008) Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 8:66. Doi: 1472-6750-8-66CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Frenzel A, Kügler J, Wilke S, Schirrmann T, Hust M (2014) Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 1060:215–243. https://doi.org/10.1007/978-1-62703-586-6_12 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Jonas Kügler
    • 1
  • Florian Tomszak
    • 1
  • André Frenzel
    • 2
    • 3
  • Michael Hust
    • 2
  1. 1.YUMAB GmbHBraunschweigGermany
  2. 2.Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und BioinformatikTechnische Universität BraunschweigBraunschweigGermany
  3. 3.YUMAB GmbHBraunschweigGermany

Personalised recommendations