Skip to main content

MicroRNA, Noise, and Gene Expression Regulation

  • Protocol
  • First Online:
MicroRNA and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1699))

Abstract

Gene regulatory network that determines the cellular functions exhibits stochastic fluctuations, or “noise,” in different layers. Noise has begun to be appreciated for many previously unrecognized functions in important cellular activities. In fact, molecular noise is unavoidable in both microbial and eukaryotic cells, the feedback system is established evolutionally to reduce noise or optimize the noise for cellular homeostasis. The small noncoding RNAs, particularly, microNRAs, post-transcriptionally and negatively regulate gene expressions. MicroRNAs function as a novel layer to buffer noise level, and stabilize mRNA and protein level to maintain normal cellular function. Furthermore, the changing of microRNA expression levels may increase the stochastic fluctuation leading to abnormal cellular function, even diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415

    Article  PubMed  Google Scholar 

  2. Raser JM, O'Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raser JM, O'Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309:2010–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chalancon G, Ravarani CN, Balaji S, Martinez-Arias A, Aravind L, Jothi R, Babu MM (2012) Interplay between gene expression noise and regulatory network architecture. Trends Genet 28:221–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang HH, Oh PY, Ingber DE, Huang S (2006) Multistable and multistep dynamics in neutrophil differentiation. BMC Cell Biol 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fraser HB, Hirsh AE, Giaever G, Kumm J, Eisen MB (2004) Noise minimization in eukaryotic gene expression. PLoS Biol 2:e137

    Article  PubMed  PubMed Central  Google Scholar 

  9. Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci U S A 99:12795–12800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swain PS (2004) Efficient attenuation of stochasticity in gene expression through post-transcriptional control. J Mol Biol 344:965–976

    Article  CAS  PubMed  Google Scholar 

  11. Bundschuh R, Hayot F, Jayaprakash C (2003) The role of dimerization in noise reduction of simple genetic networks. J Theor Biol 220:261–269

    Article  CAS  PubMed  Google Scholar 

  12. Jia Y, Liu W, Li A, Yang L, Zhan X (2009) Intrinsic noise in post-transcriptional gene regulation by small non-coding RNA. Biophys Chem 143:60–69

    Article  CAS  PubMed  Google Scholar 

  13. Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, Garcia S, Nowak J, Yeung ML, Jeang KT et al (2007) Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A 104:16170–16175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang X, Li Y, Xu X, Wang YH (2010) Toward a system-level understanding of microRNA pathway via mathematical modeling. Biosystems 100:31–38

    Google Scholar 

  15. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herranz H, Cohen SM (2010) MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 24:1339–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tomasetti C, Vogelstein B (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:78–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Swanton C, Beck S (2014) Epigenetic noise fuels cancer evolution. Cancer Cell 26:775–776

    Article  CAS  PubMed  Google Scholar 

  19. Wu S, Powers S, Zhu W, Hannun YA (2016) Substantial contribution of extrinsic risk factors to cancer development. Nature 529:43–47

    Article  CAS  PubMed  Google Scholar 

  20. Capp JP (2010) Noise-driven heterogeneity in the rate of genetic-variant generation as a basis for evolvability. Genetics 185:395–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han R, Huang G, Wang Y, Xu Y, Hu Y, Jiang W, Wang T, Xiao T, Zheng D (2016) Increased gene expression noise in human cancers is correlated with low p53 and immune activities as well as late stage cancer. Oncotarget 7:72011–72020

    PubMed  PubMed Central  Google Scholar 

  22. Wu W, Cao W, Chan JA (2013) Regulation of MicroRNAs for potential cancer therapeutics: the paradigm shift from pathways to perturbation of gene regulatory networks. In: Lopez-Camarillo C, Marchat LA (eds) MicroRNAs in cancer. CRC Press, Boca Raton, FL, pp 364–386

    Chapter  Google Scholar 

  23. Grigolon S, Di Patti F, De Martino A, Marinari E (2016) Noise processing by microRNA-mediated circuits: the incoherent feed-forward loop, revisited. Heliyon 2:e00095

    Article  PubMed  PubMed Central  Google Scholar 

  24. Iorio MV, Piovan C, Croce CM (1799) Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 2010:694–701

    Google Scholar 

  25. Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, Marchesini J, Mascellani N, Sana ME, Abu Jarour R et al (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20:589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilbert ML, Yeo GW (2011) Genome-wide approaches in the study of microRNA biology. Wiley Interdiscip Rev Syst Biol Med 3:491–512

    Article  CAS  PubMed  Google Scholar 

  27. Kim JK, Kolodziejczyk AA, Ilicic T, Teichmann SA, Marioni JC (2015) Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun 6:8687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu M.D., Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, W. (2018). MicroRNA, Noise, and Gene Expression Regulation. In: Wu, W. (eds) MicroRNA and Cancer. Methods in Molecular Biology, vol 1699. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7435-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7435-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7433-7

  • Online ISBN: 978-1-4939-7435-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics