Advertisement

Erythropoiesis pp 133-152 | Cite as

Analyzing the Formation, Morphology, and Integrity of Erythroblastic Islands

  • Jia Hao Yeo
  • Matthew P. Cosgriff
  • Stuart T. Fraser
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1698)

Abstract

The bone marrow is the primary site of erythropoiesis in healthy adult mammals. In the bone marrow, erythroid cells mature within specialized microenvironments termed erythroblastic islands (EBIs). EBIs are multi-cellular clusters comprised of a central macrophage surrounded by red blood cell (erythroid) progenitors. It has been proposed that the central macrophage functions as a “nurse-cell” providing iron, cytokines, and growth factors for the developing erythroid cells. The central macrophage also engulfs and destroys extruded erythroid nuclei. EBIs have recently been shown to play clinically important roles during human hematological disease. The molecular mechanisms regulating this hematopoietic niche are largely unknown. In this chapter, we detail protocols to study isolated EBIs using multiple microscopy platforms. Adhesion molecules regulate cell-cell interactions within the EBI and maintain the integrity of the niche. To improve our understanding of the molecular regulation of erythroid cells in EBIs, we have developed protocols for immuno-gold labeling of erythroid surface antigens to combine with scanning electron microscopy. These protocols have allowed imaging of EBIs at the nanometer scale, offering novel insights into the processes regulating red blood cell production.

Key words

Erythroblastic islands Erythropoiesis Immuno-gold labeling Bone marrow hematopoietic niche Electron microscopy 

Notes

Acknowledgments

The authors acknowledge the support received from the Bosch Institute Advanced Microscopy Facility, and the expert help of Dr. Louise Cole. The authors also acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy and Microanalysis Research Facility at the Australian Centre for Microscopy and Microanalysis at the University of Sydney. J.H.Y. is supported by The Mrs. Ann & Professor NWG Macintosh PhD Scholarship. This work was supported by funding from the Sydney Medical School New Staff Grant (S.T.F.), The Bosch Institute Translational Grant-in-Aid, the NWG Macintosh Grant 2015 (J.H.Y.) and the NWG Macintosh Grant 2016 (M.P.C). The authors would also like to thank the members of the Laboratory of Blood Cell Development and Andrology Research Group (University of Sydney) for helpful comments.

References

  1. 1.
    Al-Drees MA, Yeo JH, Boumelhem BB et al (2015) Making blood: the haematopoietic niche throughout ontogeny. Stem Cells Int 2015:571893. doi: 10.1155/2015/571893 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bessis MC (1958) L’ilot erythroblastique. Unite functionelle de la moelle osseuse. Rev Hematol 1958:8–11Google Scholar
  3. 3.
    Bessis MC (1973) Cellules du sang, normal et pathologique. Springer, BerlinGoogle Scholar
  4. 4.
    Mohandas N, Prenant M (1978) Three-dimensional model of bone marrow. Blood 51:633–643PubMedGoogle Scholar
  5. 5.
    Sadahira Y, Yasuda T, Kimoto T (1991) Regulation of Forssman antigen expression during maturation of mouse stromal macrophages in haematopoietic foci. Immunology 73:498–504PubMedPubMedCentralGoogle Scholar
  6. 6.
    Yokoyama T, Etoh T, Kitagawa H et al (2003) Migration of erythroblastic islands toward the sinusoid as erythroid maturation proceeds in rat bone marrow. J Vet Med Sci 65:449–452CrossRefPubMedGoogle Scholar
  7. 7.
    Rhodes MM, Kopsombut P, Bondurant MC et al (2007) Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin. Blood 111:1700–1708. doi: 10.1182/blood-2007-06-098178 CrossRefPubMedGoogle Scholar
  8. 8.
    Isern J, Fraser ST, He Z, Baron MH (2008) The fetal liver is a niche for maturation of primitive erythroid cells. Proc Natl Acad Sci U S A 105:6662–6667. doi: 10.1073/pnas.0802032105 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kusakabe M, Hasegawa K, Hamada M et al (2011) c-Maf plays a crucial role for the definitive erythropoiesis that accompanies erythroblastic island formation in the fetal liver. Blood 118:1374–1385. doi: 10.1182/blood-2010-08-300400 CrossRefPubMedGoogle Scholar
  10. 10.
    Yeo JH, McAllan BM, Fraser ST (2016) Scanning electron microscopy reveals two distinct classes of erythroblastic island isolated from adult mammalian bone marrow. Microsc Microanal 22:368–378. doi: 10.1017/S1431927616000155 CrossRefPubMedGoogle Scholar
  11. 11.
    Lee SH, Crocker PR, Westaby S et al (1988) Isolation and immunocytochemical characterization of human bone marrow stromal macrophages in hemopoietic clusters. J Exp Med 168:1193–1198CrossRefPubMedGoogle Scholar
  12. 12.
    Switzer JW (1967) Bone marrow composition in the adult rhesus monkey (Macaca mulatta). J Am Vet Med Assoc 151:823–829PubMedGoogle Scholar
  13. 13.
    Glomski CA, Alessandra Pica JF (2015) Erythrocytes of the rhesus and cynomolgus monkeys. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  14. 14.
    Crocker PR, Morris L, Gordon S (1988) Novel cell surface adhesion receptors involved in interactions between stromal macrophages and haematopoietic cells. J Cell Sci Suppl 9:185–206CrossRefPubMedGoogle Scholar
  15. 15.
    Takashina T (1987) Haemopoiesis in the human yolk sac. J Anat 151:125–135. doi: 10.1111/(ISSN)1469-7580 PubMedPubMedCentralGoogle Scholar
  16. 16.
    Sadahira Y, Mori M, Kimoto T (1990) Isolation and short-term culture of mouse splenic erythroblastic islands. Cell Struct Funct 15:59–65CrossRefPubMedGoogle Scholar
  17. 17.
    Berman I (1967) The ultrastructure of erythroblastic islands and reticular cells in mouse bone marrow. J Ultrastruct Res 17:291–313CrossRefPubMedGoogle Scholar
  18. 18.
    Rassokhin AG (2002) Regularities of hemopoietic development in bone marrow erythroblastic islands during early ontogenesis. Vestn Akad Med Nauk:7–12Google Scholar
  19. 19.
    Sorenson G (1961) An electron microscopic study of hematopoiesis in the yolk sac. Lab Investig 10:178–193Google Scholar
  20. 20.
    Bessis MC, Breton-Gorius J (1962) Iron metabolism in the bone marrow as seen by electron microscopy: a critical review. Blood 19:635–663PubMedGoogle Scholar
  21. 21.
    Fraser ST, Midwinter RG, Coupland LA et al (2015) Heme oxygenase-1 deficiency alters erythroblastic island formation, steady-state erythropoiesis and red blood cell lifespan in mice. Haematologica. doi: 10.3324/haematol.2014.116368
  22. 22.
    Keerthivasan G, Wickrema A, Crispino JD (2011) Erythroblast enucleation. Stem Cells Int 2011:139851–139859. doi: 10.4061/2011/139851 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Koulnis M, Liu Y, Hallstrom K, Socolovsky M (2011) Negative autoregulation by Fas stabilizes adult erythropoiesis and accelerates its stress response. PLoS One 6:e21192–e21114. doi: 10.1371/journal.pone.0021192 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ingley E (2012) Integrating novel signaling pathways involved in erythropoiesis. IUBMB Life 64:402–410. doi: 10.1002/iub.1024 CrossRefPubMedGoogle Scholar
  25. 25.
    Rich IN, Vogt C, Pentz S (1988) Erythropoietin gene expression in macrophages detected by in situ hybridization. Behring Inst Mitt:202–206Google Scholar
  26. 26.
    Chasis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112:470–478. doi: 10.1182/blood-2008-03-077883 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jacobsen RN, Forristal CE, Raggatt LJ et al (2014) Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80+VCAM1+CD169+ER-HR3+Ly6G+ erythroid island macrophages in the mouse. Exp Hematol 42:547–561.e4. doi: 10.1016/j.exphem.2014.03.009 CrossRefPubMedGoogle Scholar
  28. 28.
    Jacobsen RN, Nowlan B, Brunck ME et al (2016) Fms-like tyrosine kinase 3 (Flt3) ligand depletes erythroid island macrophages and blocks medullar erythropoiesis in the mouse. Exp Hematol 44:207–212.e4. doi: 10.1016/j.exphem.2015.11.004 CrossRefPubMedGoogle Scholar
  29. 29.
    Toda S, Segawa K, Nagata S (2014) MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood 123:3963–3971. doi: 10.1182/blood-2014-01-547976 CrossRefPubMedGoogle Scholar
  30. 30.
    Miyanishi M, Tada K, Koike M et al (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439. doi: 10.1038/nature06307 CrossRefPubMedGoogle Scholar
  31. 31.
    Savill J, Gregory C (2007) Apoptotic PS to phagocyte TIM-4: eat me. Immunity 27:830–832. doi: 10.1016/j.immuni.2007.12.002 CrossRefPubMedGoogle Scholar
  32. 32.
    Nagata S (2007) Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunol Rev 220:237–250. doi: 10.1111/j.1600-065X.2007.00571.x CrossRefPubMedGoogle Scholar
  33. 33.
    Yoshida H, Kawane K, Koike M et al (2005) Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nat Cell Biol 437:754–758. doi: 10.1038/nature03964 Google Scholar
  34. 34.
    Kawane K, Fukuyama H, Kondoh G et al (2001) Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292:1546–1549. doi: 10.1126/science.292.5521.1546 CrossRefPubMedGoogle Scholar
  35. 35.
    Liu J, Guo X, Mohandas N et al (2010) Membrane remodeling during reticulocyte maturation. Blood 115:2021–2027. doi: 10.1182/blood-2009-08-241182 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sadahira Y, Yoshino T, Monobe Y (1995) Very late activation antigen 4-vascular cell adhesion molecule 1 interaction is involved in the formation of erythroblastic islands. J Exp Med 181:411–415CrossRefPubMedGoogle Scholar
  37. 37.
    Lee G, Lo A, Short SA et al (2006) Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation. Blood 108:2064–2071. doi: 10.1182/blood-2006-03-006759 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang Z, Vogel O, Kuhn G et al (2013) Decreased stability of erythroblastic islands in integrin β3-deficient mice. Physiol Rep 1. doi: 10.1002/phy2.18
  39. 39.
    Hanspal M, Hanspal JS (1994) The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: a 30-kD heparin-binding protein is involved in this contact. Blood 84:3494–3504PubMedGoogle Scholar
  40. 40.
    Hanspal M, Smockova Y, Uong Q (1998) Molecular identification and functional characterization of a novel protein that mediates the attachment of erythroblasts to macrophages. Blood 92:2940–2950PubMedGoogle Scholar
  41. 41.
    Soni S, Bala S, Gwynn B et al (2006) Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion. J Biol Chem 281:20181–20189. doi: 10.1074/jbc.M603226200 CrossRefPubMedGoogle Scholar
  42. 42.
    Mao X, Shi X, Liu F et al (2013) Evaluation of erythroblast macrophage protein related to erythroblastic islands in patients with hematopoietic stem cell transplantation. Eur J Med Res 18:9. doi: 10.1186/2047-783X-18-9 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bala S, Kumar A, Soni S et al (2006) Emp is a component of the nuclear matrix of mammalian cells and undergoes dynamic rearrangements during cell division. Biochem Biophys Res Commun 342:1040–1048. doi: 10.1016/j.bbrc.2006.02.060 CrossRefPubMedGoogle Scholar
  44. 44.
    Chow A, Huggins M, Ahmed J et al (2013) CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med. doi: 10.1038/nm.3057
  45. 45.
    Ramos P, Casu C, Gardenghi S et al (2013) Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia. Nat Med:1–11. doi: 10.1038/nm.3126
  46. 46.
    Buesche G, Teoman H, Giagounidis A et al (2016) Impaired formation of erythroblastic islands is associated with erythroid failure and poor prognosis in a significant proportion of patients with myelodysplastic syndromes. Haematologica 101:e177–e181. doi: 10.3324/haematol.2015.129015 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wang Y-H, Fu R, Dong S-W et al (2014) Erythroblastic islands in the bone marrow of patients with immune-related pancytopenia. PLoS One 9:e95143. doi: 10.1371/journal.pone.0095143 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bessis M (1955) Phase contrast microscopy and electron microscopy applied to the blood cells: general review. Blood 10:272–286PubMedGoogle Scholar
  49. 49.
    Acar M, Kocherlakota KS, Murphy MM et al (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526:126–130. doi: 10.1038/nature15250 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fujii Y, Terada N, Ueda H et al (1997) Electron microscopic study of erythroblastic islands obtained by “tissue-stamp culture” method. J Electron Microsc 46:477–484CrossRefGoogle Scholar
  51. 51.
    Ellis SL, Grassinger J, Jones A et al (2011) The relationship between bone, hemopoietic stem cells, and vasculature. Blood 118:1516–1524. doi: 10.1182/blood-2010-08-303800 CrossRefPubMedGoogle Scholar
  52. 52.
    Vanna R, Ronchi P, Lenferink ATM et al (2015) Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy. Analyst 140:1054–1064. doi: 10.1039/C4AN02127D CrossRefPubMedGoogle Scholar
  53. 53.
    Asghari-Khiavi M, Wood BR, Mechler A et al (2010) Correlation of atomic force microscopy and Raman micro-spectroscopy to study the effects of ex vivo treatment procedures on human red blood cells. Analyst 135:525–526. doi: 10.1039/b919245j CrossRefPubMedGoogle Scholar
  54. 54.
    Mukherjee R, Saha M, Routray A, Chakraborty C (2015) Nanoscale surface characterization of human erythrocytes by atomic force microscopy: a critical review. IEEE Trans Nanobiosci 14:625–633. doi: 10.1109/TNB.2015.2424674 CrossRefGoogle Scholar
  55. 55.
    Maciaszek JL, Andemariam B, Huber G, Lykotrafitis G (2012) Epinephrine modulates BCAM/Lu and ICAM-4 expression on the sickle cell trait red blood cell membrane. Biophys J 102:1137–1143. doi: 10.1016/j.bpj.2012.01.050 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Krause MA, Diakite SAS, Lopera-Mesa TM et al (2012) α-Thalassemia impairs the cytoadherence of Plasmodium falciparum-infected erythrocytes. PLoS One 7:e37214–e37217. doi: 10.1371/journal.pone.0037214 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tian Y, Cai M, Xu H et al (2014) Atomic force microscopy of asymmetric membranes from turtle erythrocytes. Mol Cells 37:592–597. doi: 10.14348/molcells.2014.0115 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tian Y-M, Cai M-J, Zhao W-D et al (2014) The asymmetric membrane structure of erythrocytes from Crucian carp studied by atomic force microscopy. Chin Sci Bull 59:2582–2587. doi: 10.1007/s11434-014-0375-6 CrossRefGoogle Scholar
  59. 59.
    de Harven E (1984) A novel approach for scanning electron microscopy of colloidal gold-labeled cell surfaces. J Cell Biol 99:53–57. doi: 10.1083/jcb.99.1.53 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Jia Hao Yeo
    • 1
  • Matthew P. Cosgriff
    • 1
  • Stuart T. Fraser
    • 1
    • 2
  1. 1.Discipline of Anatomy and Histology, School of Medical Sciences, Bosch InstituteUniversity of SydneyCamperdownAustralia
  2. 2.Discipline of Physiology, School of Medical SciencesUniversity of SydneyCamperdownAustralia

Personalised recommendations