Dissecting Regulatory Mechanisms Using Mouse Fetal Liver-Derived Erythroid Cells

  • Skye C. McIver
  • Kyle J. Hewitt
  • Xin Gao
  • Charu Mehta
  • Jing Zhang
  • Emery H. Bresnick
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1698)

Abstract

Multipotent hematopoietic stem cells differentiate into an ensemble of committed progenitor cells that produce the diverse blood cells essential for life. Physiological mechanisms governing hematopoiesis, and mechanistic aberrations underlying non-malignant and malignant hematologic disorders, are often very similar in mouse and man. Thus, mouse models provide powerful systems for unraveling mechanisms that control hematopoietic stem/progenitor cell (HSPC) function in their resident microenvironments in vivo. Ex vivo systems, involving the culture of HSPCs generated in vivo, allow one to dissociate microenvironment-based and cell intrinsic mechanisms, and therefore have considerable utility. Dissecting mechanisms controlling cellular proliferation and differentiation is facilitated by the use of primary cells, since mutations and chromosome aberrations in immortalized and cancer cell lines corrupt normal mechanisms. Primary erythroid precursor cells can be expanded or differentiated in culture to yield large numbers of progeny at discrete maturation stages. We described a robust method for isolation, culture, and analysis of primary mouse erythroid precursor cells and their progeny.

Key words

Hematopoiesis Erythropoiesis Ex vivo culture Flow cytometry Signaling 

Notes

Acknowledgments

The lineage negative cell isolation and culture protocols were adapted from those originally provided by M.J. Weiss. This work was supported by NIH grants DK50107 and DK68634.

References

  1. 1.
    Dzierzak E, Philipsen S (2013) Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med 3(4):a011601. doi: 10.1101/cshperspect.a011601 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dzierzak E, de Pater E (2016) Regulation of blood stem cell development. Curr Top Dev Biol 118:1–20. doi: 10.1016/bs.ctdb.2016.01.001 CrossRefPubMedGoogle Scholar
  3. 3.
    Tober J, Maijenburg MW, Speck NA (2016) Taking the leap: Runx1 in the formation of blood from endothelium. Curr Top Dev Biol 118:113–162. doi: 10.1016/bs.ctdb.2016.01.008 CrossRefPubMedGoogle Scholar
  4. 4.
    Morrison SJ, Hemmati HD, Wandycz AM, Weissman IL (1995) The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci U S A 92(22):10302–10306CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rebel VI, Miller CL, Eaves CJ, Lansdorp PM (1996) The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their liver adult bone marrow counterparts. Blood 87(8):3500–3507PubMedGoogle Scholar
  6. 6.
    Zhang J, Socolovsky M, Gross AW, Lodish HF (2003) Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 102(12):3938–3946. doi: 10.1182/blood-2003-05-1479 CrossRefPubMedGoogle Scholar
  7. 7.
    Coffman RL, Weissman IL (1981) B220: a B cell-specific member of the T200 glycoprotein family. Nature 289(5799):681–683CrossRefPubMedGoogle Scholar
  8. 8.
    Fleming TJ, Fleming ML, Malek TR (1993) Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol 151(5):2399–2408PubMedGoogle Scholar
  9. 9.
    Khandros E, Thom CS, D’Souza J, Weiss MJ (2012) Integrated protein quality-control pathways regulate free alpha-globin in murine beta-thalassemia. Blood 119(22):5265–5275. doi: 10.1182/blood-2011-12-397729 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    DeVilbiss AW, Sanalkumar R, Hall BD, Katsumura KR, de Andrade IF, Bresnick EH (2015) Epigenetic determinants of erythropoiesis: role of the histone methyltransferase SetD8 in promoting erythroid cell maturation and survival. Mol Cell Biol 35(12):2073–2087. doi: 10.1128/MCB.01422-14 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McIver SC, Kang YA, DeVilbiss AW, O’Driscoll CA, Ouellette JN, Pope NJ, Camprecios G, Chang CJ, Yang D, Bouhassira EE, Ghaffari S, Bresnick EH (2014) The exosome complex establishes a barricade to erythroid maturation. Blood 124(14):2285–2297. doi: 10.1182/blood-2014-04-571083 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hewitt KJ, Kim DH, Devadas P, Prathibha R, Zuo C, Sanalkumar R, Johnson KD, Kang YA, Kim JS, Dewey CN, Keles S, Bresnick EH (2015) Hematopoietic signaling mechanism revealed from a stem/progenitor cell cistrome. Mol Cell 59(1):62–74. doi: 10.1016/j.molcel.2015.05.020 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gao X, Wu T, Johnson KD, Lahvic JL, Ranheim EA, Zon LI, Bresnick EH (2016) GATA factor-G-protein-coupled receptor circuit suppresses hematopoiesis. Stem Cell Rep 6(3):368–382. doi: 10.1016/j.stemcr.2016.01.008 CrossRefGoogle Scholar
  14. 14.
    McIver SC, Katsumura KR, Davids E, Liu P, Kang Y-A, Yang D, Bresnick EH (2016) Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis. eLife 5:e17877. doi: 10.7554/eLife.17877 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hewitt KJ, Katsumura KR, Matson DR, Devadas P, Tanimura N, Hebert AS, Coon JJ, Kim JS, Dewey CN, Keles S, Hao S, Paulson RF, Bresnick EH (2017) GATA factor-regulated Samd14 enhancer confers red blood cell regeneration and survival in severe anemia. Dev Cell 42(3):213–225.e4.  https://doi.org/10.1016/j.devcel.2017.07.009.7 CrossRefPubMedGoogle Scholar
  16. 16.
    Mehta C, Johnson KD, Gao X, Ong IM, Katsumura KR, McIver SC, Ranheim EA, Bresnick EH (2017) Integrating enhancer mechanisms to establish a hierarchical blood development program. Cell Rep (In Press)Google Scholar
  17. 17.
    Lee HY, Gao X, Barrasa MI, Li H, Elmes RR, Peters LL, Lodish HF (2015) PPAR-alpha and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Nature 522(7557):474–477. doi: 10.1038/nature14326 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Williams DA, Bunn HF, Sieff C, Zon LI (2003) Hematopoiesis. In: Handin RI, Lux SE, Stossel TP (eds) Blood: principles and practice of hematology, 2nd edn. Lippincott Williams and Wilkins, Philadelphia, PA, pp 147–208Google Scholar
  19. 19.
    McGarry MP, Protheroe CA, Lee JJ (2010) Mouse hematology: a laboratory manual. Cold Spring Harbor Laboratory Press, Woodbury, NYGoogle Scholar
  20. 20.
    Broxmeyer HE (1984) Colony assays of hematopoietic progenitor cells and correlations to clinical situations. Crit Rev Oncol Hematol 1(3):227–257CrossRefPubMedGoogle Scholar
  21. 21.
    Gregory CJ, Eaves AC (1978) Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood 51(3):527–537PubMedGoogle Scholar
  22. 22.
    Munugalavadla V, Kapur R (2005) Role of c-Kit and erythropoietin receptor in erythropoiesis. Crit Rev Oncol Hematol 54(1):63–75. doi: 10.1016/j.critrevonc.2004.11.005 CrossRefPubMedGoogle Scholar
  23. 23.
    Muta K, Krantz SB, Bondurant MC, Dai CH (1995) Stem cell factor retards differentiation of normal human erythroid progenitor cells while stimulating proliferation. Blood 86(2):572–580PubMedGoogle Scholar
  24. 24.
    Sui X, Krantz SB, You M, Zhao Z (1998) Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythropoiesis. Blood 92(4):1142–1149PubMedGoogle Scholar
  25. 25.
    Wu H, Klingmuller U, Acurio A, Hsiao JG, Lodish HF (1997) Functional interaction of erythropoietin and stem cell factor receptors is essential for erythroid colony formation. Proc Natl Acad Sci U S A 94(5):1806–1810. doi: 10.1160/TH08-08-0556 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wu H, Liu X, Jaenisch R, Lodish HF (1995) Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83(1):59–67CrossRefPubMedGoogle Scholar
  27. 27.
    Wu H, Klingmuller U, Besmer P, Lodish HF (1995) Interaction of the erythropoietin and stem-cell-factor receptors. Nature 377(6546):242–246. doi: 10.1038/377242a0 CrossRefPubMedGoogle Scholar
  28. 28.
    Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF (2011) From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 118(24):6258–6268. doi: 10.1182/blood-2011-07-356006 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Haas N, Riedt T, Labbaf Z, Bassler K, Gergis D, Frohlich H, Gutgemann I, Janzen V, Schorle H (2015) Kit transduced signals counteract erythroid maturation by MAPK-dependent modulation of erythropoietin signaling and apoptosis induction in mouse fetal liver. Cell Death Differ 22(5):790–800. doi: 10.1038/cdd.2014.172 CrossRefPubMedGoogle Scholar
  30. 30.
    Pop R, Shearstone JR, Shen Q, Liu Y, Hallstrom K, Koulnis M, Gribnau J, Socolovsky M (2010) A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression. PLoS Biol 8(9):e1000484. doi: 10.1371/journal.pbio.1000484 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N (2009) Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A 106(41):17413–17418. doi: 10.1073/pnas.0909296106 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dunning K, Safo AO (2011) The ultimate Wright-Giemsa stain: 60 years in the making. Biotech Histochem 86(2):69–75. doi: 10.3109/10520295.2010.515496 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Skye C. McIver
    • 1
    • 2
  • Kyle J. Hewitt
    • 1
    • 2
  • Xin Gao
    • 1
    • 2
  • Charu Mehta
    • 1
    • 2
  • Jing Zhang
    • 2
    • 3
  • Emery H. Bresnick
    • 1
    • 2
  1. 1.Department of Cell and Regenerative Biology, Carbone Cancer CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  2. 2.UW-Madison Blood Research ProgramUniversity of WisconsinMadisonUSA
  3. 3.McArdle Laboratory for Cancer ResearchUniversity of WisconsinMadisonUSA

Personalised recommendations