Erythropoiesis pp 285-292 | Cite as

Good Manufacturing Practice (GMP) Translation of Advanced Cellular Therapeutics: Lessons for the Manufacture of Erythrocytes as Medicinal Products

  • Neil W. A. McGowan
  • John D. M. Campbell
  • Joanne C. Mountford
Part of the Methods in Molecular Biology book series (MIMB, volume 1698)


Blood transfusion is a mainstay of modern medical practice. In many parts of the world the use of this life-saving therapy is hampered by issues of supply and the potential for transfusion transmitted infections. Accordingly, there are many studies seeking to find an alternative to donated red blood cells (RBCs) for transfusion, including large-scale production from adult and pluripotent stem cells, or erythroid cell lines. Translating basic studies, using any cell lineage, into protocols that are suitable for the generation of cellular therapies requires a wide range of biological and regulatory procedures to be put in place. Additionally, there are specific challenges for the production of RBCs caused by the number of cells needed for a single dose (approx. 1–2 × 1012). In this chapter, we will review critical areas in the development and good manufacturing practice (GMP) translation of cellular therapeutics through to early phase clinical trials and how this learning can be applied to in vitro RBC therapies.

Key words

Good manufacturing practice (GMP) Cellular therapy Translation Red blood cells Regulatory requirements 


  1. 1.
    Mountford JC, Turner M (2011) In vitro production of red blood cells. Transfus Apher Sci 45(1):85–89. doi: 10.1016/j.transci.2011.06.007. Review. PubMed PMID: 21723197CrossRefPubMedGoogle Scholar
  2. 2.
    Watkins NA, Dobra S, Bennett P, Cairns J, Turner ML (2012) The management of blood safety in the presence of uncertain risk: a United kingdom perspective. Transfus Med Rev 26(3):238–251. doi: 10.1016/j.tmrv.2011.09.003. Review. PubMed PMID: 22126710CrossRefPubMedGoogle Scholar
  3. 3.
    Olivier EN, Marenah L, McCahill A, Condie A, Cowan S, Mountford JC (2016) High-efficiency serum-free feeder-free Erythroid differentiation of human pluripotent stem cells using small molecules. Stem Cells Transl Med 5(10):1394–1405. PubMed PMID: 27400796; PubMed Central PMCID: PMC5031182CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
  5. 5.
    Norfolk D (ed) (2013) Handbook of transfusion medicine, 5th edn. TSO, Norwich. isbn:9780117068469Google Scholar
  6. 6.
    PAS 83:2012. Developing human cells for clinical applications in the European Union and the United States of AmericaGoogle Scholar
  7. 7.
    Mittra J, Tait J, Mastroeni M, Turner ML, Mountford JC, Bruce K (2015) Identifying viable regulatory and innovation pathways for regenerative medicine: a case study of cultured red blood cells. New Biotechnol 32(1):180–190. doi: 10.1016/j.nbt.2014.07.008. PubMed PMID: 25094050CrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
    Campbell A, Brieva T, Raviv L, Rowley J, Niss K, Brandwein H, Oh S, Karnieli O (2015) Concise review: process development considerations for cell therapy. Stem Cells Transl Med 4(10):1155–1163. doi: 10.5966/sctm.2014-0294. Review. PubMed PMID: 26315572; PubMed Central PMCID: PMC4572896CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
  12. 12.
  13. 13.
  14. 14.
  15. 15.
    US FDA (2015) Considerations for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products; Guidance for Industry.
  16. 16.
  17. 17.
  18. 18.
    Giangrande PL (2000) The history of blood transfusion. Br J Haematol 110(4):758–767. PubMed PMID: 11054057CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Neil W. A. McGowan
    • 1
    • 2
  • John D. M. Campbell
    • 1
    • 2
  • Joanne C. Mountford
    • 2
  1. 1.MRC Centre for Regenerative MedicineThe University of EdinburghEdinburghUK
  2. 2.Advanced Therapeutics, Scottish National Blood Transfusion Service, National Science LaboratoryEdinburghUK

Personalised recommendations