Advertisement

Erythropoiesis pp 259-274 | Cite as

In Vitro Erythroid Differentiation and Lentiviral Knockdown in Human CD34+ Cells from Umbilical Cord Blood

  • Anna Kovilakath
  • Safa Mohamad
  • Farrah Hermes
  • Shou Zhen Wang
  • Gordon D. Ginder
  • Joyce A. Lloyd
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1698)

Abstract

Human umbilical cord blood is a rich source of hematopoietic stem and progenitor cells. CD34+ cells in umbilical cord blood are more primitive than those in peripheral blood or bone marrow, and can proliferate at a high rate and differentiate into multiple cell types. In this protocol, a dependable method is described for the isolation of fetal CD34+ cells from umbilical cord blood and expanding these cells in culture. The cells can then be in vitro differentiated along an erythroid pathway, while simultaneously performing knockdown of a gene of choice. The use of lentiviral vectors that express small hairpin RNA (shRNA) is an efficient method to downregulate genes. Flow cytometric analyses are used to enrich for erythroid cells. Using these methods, one can generate in vitro differentiated cells to use for quantitative reverse transcriptase PCR and other purposes.

Key words

Umbilical cord blood CD34+ cells Lentiviral infection shRNA knockdown Erythroid differentiation 

Notes

Acknowledgments

We would like to thank the St. Louis Cord Blood Bank (SLCBB, St. Louis, MO) for providing us with fresh umbilical cord blood.

References

  1. 1.
    Simmons DL, Satterthwaite AB, Tenen DG, Seed B (1992) Molecular cloning of a cDNA encoding CD34, a sialomucin of human hematopoietic stem cells. J Immunol 148(1):267–271PubMedGoogle Scholar
  2. 2.
    Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A (2014) Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 32(6):1380–1389CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Huang S, Law P, Young D, Ho AD (1998) Candidate hematopoietic stem cells from fetal tissues, umbilical cord blood vs. adult bone marrow and mobilized peripheral blood. Exp Hematol 26(12):1162–1171PubMedGoogle Scholar
  4. 4.
    Smogorzewska EM, Barsky LW, Crooks GM, Wienberg KI (1997) Purification of hematopoietic stem cells from human bone marrow and umbilical cord blood. Cent Eur J Immunol 22:232–239Google Scholar
  5. 5.
    Hordyjewska A, Popiołek Ł, Horecka A (2015) Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology 67(3):387–396CrossRefPubMedGoogle Scholar
  6. 6.
    Zhou G, Chen J, Lee S, Clark T, Rowley JD, Wang SM (2001) The pattern of gene expression in human CD34+ stem/progenitor cells. Proc Natl Acad Sci 98(24):13966–13971CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kurita R, Suda N, Sudo K, Miharada K, Hiroyama T, Miyoshi H, Tani K, Nakamura Y (2013) Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS One 8(3):e59890CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fibach E, Prus E (2005) Differentiation of human erythroid cells in culture. Curr Protoc Immunol Chapter 22:Unit 22F.7PubMedGoogle Scholar
  9. 9.
    Loken MR, Shah VO, Dattilio KL, Civin CI (1987) Flow cytometric analysis of human bone marrow. II normal B lymphocyte development. Blood 70(5):1316–1324PubMedGoogle Scholar
  10. 10.
    Saeland S, Caux C, Favre C, Aubry JP, Mannoni P, Pebusque MJ, Gentilhomme O, Otsuka T, Yokota T, Arai N (1988) Effects of recombinant human interleukin-3 on CD34-enriched normal hematopoietic progenitors and on myeloblastic leukemia cells. Blood 72(5):1580–1588PubMedGoogle Scholar
  11. 11.
    Caux C, Favre C, Saeland S, Duvert V, Mannoni P, Durand I, Aubry JP, de Vries JE (1989) Sequential loss of CD34 and class II MHC antigens on purified cord blood hematopoietic progenitors cultured with IL-3: characterization of CD34-, HLA-DR+ cells. Blood 74(4):1287–1294PubMedGoogle Scholar
  12. 12.
    Wysocki LJ, Sato VL (1978) “Panning” for lymphocytes: a method for cell selection. Proc Natl Acad Sci 75(6):2844–2848CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fibach E, Manor D, Oppenheim A, Rachmilewitz EA (1989) Proliferation and maturation of human erythroid progenitors in liquid culture. Blood 73:100–103PubMedGoogle Scholar
  14. 14.
    Fibach E, Rachmilewitz EA (1993) The two-step liquid culture: a novel procedure for studying maturation of human normal and pathological erythroid precursors. Stem Cells 11(S1):36–41CrossRefPubMedGoogle Scholar
  15. 15.
    Migliaccio G, Di Pietro R, Di Giacomo V, Di Baldassarre A, Migliaccio AR, Maccioni L, Galanello R, Papayannopoulou T (2002) In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients. Blood Cell Mol Dis 28(2):169–180CrossRefGoogle Scholar
  16. 16.
    Li Y, Tsun A, Gao Z, Han Z, Gao Y, Li Z, Lin F, Wang Y, Wei G, Yao Z, Li B (2013) 60-kDa Tat-interactive protein (TIP60) positively regulates Th-inducing POK (ThPOK)-mediated repression of eomesodermin in human CD4+ T cells. J Biol Chem 288(22):15537–15546CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Amaya M, Desai M, Gnanapragasam MN, Wang SZ, Zu Zhu S, Williams DC, Ginder GD (2013) Mi2β-mediated silencing of the fetal -globin gene in adult erythroid cells. Blood 121(17):3493–3501CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gnanapragasam MN, Scarsdale JN, Amaya ML, Webb HD, Desai MA, Walavalkar NM, Wang SZ, Zu Zhu S, Ginder GD, Williams DC (2011) p66α–MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2–NuRD complex. Proc Natl Acad Sci 108(18):7487–7492CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kingston RE, Chen CA, Rose JK (2003) Calcium phosphate transfection. Curr Protoc Mol Biol Chapter 9:Unit 9F.1Google Scholar
  20. 20.
    Singer O, Verma IM (2008) Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr Gene Ther 8(6):483–488CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vinjamur DS, Alhashem YN, Mohamad SF, Amin P, Williams DC Jr, Lloyd JA (2016) Krüppel-like transcription factor KLF1 is required for optimal γ-and β-globin expression in human fetal erythroblasts. PLoS One 11(2):e0146802CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Naldini L, Blömer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci 93(21):11382–11388CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dijkers PF, Medema RH, Lammers JWJ, Koenderman L, Coffer PJ (2000) Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 10(19):1201–1204CrossRefPubMedGoogle Scholar
  24. 24.
    Olivier EN, Qiu C, Velho M, Hirsch RE, Bouhassira EE (2006) Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol 34(12):1635–1642CrossRefPubMedGoogle Scholar
  25. 25.
    Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77(16):8957–8951CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Anna Kovilakath
    • 1
  • Safa Mohamad
    • 1
  • Farrah Hermes
    • 1
  • Shou Zhen Wang
    • 2
  • Gordon D. Ginder
    • 2
    • 3
  • Joyce A. Lloyd
    • 1
    • 2
  1. 1.Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondUSA
  2. 2.Massey Cancer CenterVirginia Commonwealth UniversityRichmondUSA
  3. 3.Department of Internal MedicineVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations