Skip to main content

Genome Editing of Erythroid Cell Culture Model Systems

  • Protocol
  • First Online:
Erythropoiesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1698))

Abstract

Genome editing to introduce specific mutations or to knock out genes in model cell systems has become an efficient platform for research in the fields of molecular biology, genetics, and cell biology. With recent rapid improvements in genome editing techniques, bench-top manipulation of the genome in cell culture has become progressively easier. The application of this knowledge to erythroid cell culture systems now allows the rapid analysis of the downstream effects of virtually any engineered gene disruption or modification in cell systems. Here, we describe a CRISPR/Cas9-based approach to making genomic modifications in erythroid lineage cells which we have successfully used in both murine (MEL) and human (K562) erythroleukaemia immortalized cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO|Sickle-cell disease and other haemoglobin disorders. http://www.who.int/mediacentre/factsheets/fs308/en/. Accessed 12 Dec 2015

  2. Thein SL, Menzel S, Lathrop M, Garner C (2009) Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet 18:R216–R223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hemminger J (2012) Identification and reporting of common hemoglobin disorders: a review. Ibnosina J Med Biomed Sci 4:8–10

    Google Scholar 

  4. Bauer DE, Orkin SH (2011) Update on fetal hemoglobin gene regulation in hemoglobinopathies. Curr Opin Pediatr 23:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bauer D, Kamran S, Orkin S (2015) Reawakening fetal hemoglobin: prospects for new therapies for the B-globin disorders. Blood 125:1061–1072

    Article  Google Scholar 

  6. Bank A (2006) Regulation of human fetal hemoglobin: new players, new complexities. Blood 107:435–443

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wilber A, Nienhuis AW, Persons DA, Dc W (2013) Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. Blood 117:3945–3953. doi:10.1182/blood-2010-11-316893

    Article  Google Scholar 

  8. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–822

    Article  CAS  PubMed  Google Scholar 

  9. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Richardson CD, Ray GJ, DeWitt MA et al (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34:339–344

    Article  CAS  PubMed  Google Scholar 

  12. Masuda T, Wang X, Maeda M et al (2016) Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 351:285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Domcke S, Bardet AF, Adrian Ginno P et al (2015) Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528:575–579

    Article  CAS  PubMed  Google Scholar 

  14. Paquet D, Kwart D, Chen A et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129

    Article  CAS  PubMed  Google Scholar 

  15. Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 61:5985–5991

    Google Scholar 

  16. Wienert B, Funnell APW, Norton LJ et al (2015) Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin. Nat Commun 6:7085

    Article  CAS  PubMed  Google Scholar 

  17. Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Finotti A, Breda L, Lederer CW et al (2015) Recent trends in the gene therapy of β-thalassemia. J Blood Med 6:69–85

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Puthenveetil G, Scholes J, Carbonell D et al (2004) Successful correction of the human β-thalassemia major phenotype using a lentiviral vector. Blood 104:3445–3453

    Article  CAS  PubMed  Google Scholar 

  20. DeWitt M, Magis W, Bray NL, et al (2016) Efficient correction of the sickle mutation in human hematopoietic stem cells using a Cas9 ribonucleoprotein complex. bioRxiv 036236

    Google Scholar 

  21. Chang JC, Ye L, Kan YW (2006) Correction of the sickle cell mutation in embryonic stem cells. Proc Natl Acad Sci U S A 103:1036–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ran F, Hsu P, Wright J, Agarwala V (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ayyadevara S, Thaden JJ, Shmookler Reis RJ (2000) Discrimination of primer 3′-nucleotide mismatch by taq DNA polymerase during polymerase chain reaction. Anal Biochem 284:11–18

    Article  CAS  PubMed  Google Scholar 

  24. Chu VT, Weber T, Wefers B et al (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work has been supported by funding from the Australian Research Council and the National Health and Medical Research Council to M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate G. R. Quinlan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yik, J.J., Crossley, M., Quinlan, K.G.R. (2018). Genome Editing of Erythroid Cell Culture Model Systems. In: Lloyd, J. (eds) Erythropoiesis. Methods in Molecular Biology, vol 1698. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7428-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7428-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7427-6

  • Online ISBN: 978-1-4939-7428-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics