Skip to main content

High-Resolution Fluorescence Microscope Imaging of Erythroblast Structure

  • Protocol
  • First Online:
Erythropoiesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1698))

Abstract

During erythropoiesis, erythroblasts undergo dramatic morphological changes to produce mature erythrocytes. Many unanswered questions regarding the molecular mechanisms behind these changes can be addressed with high-resolution fluorescence imaging. Immunofluoresence staining enables localization of specific molecules, organelles, and membrane components in intact cells at different phases of erythropoiesis. Confocal laser scanning microscopy can provide high-resolution, three-dimensional images of stained structures, which can be used to dissect the molecular mechanisms driving erythropoiesis. The sample preparation, staining procedure, imaging parameters, and image analysis methods used directly affect the quality of the confocal images and the amount and accuracy of information that they can provide. Here, we describe methods to dissect erythropoietic tissues from mice, to perform immunofluorescence staining and confocal imaging of various molecules, organelles and structures of interest in erythroblasts, and to present and quantitatively analyze the data obtained in these fluorescence images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palis J (2014) Primitive and definitive erythropoiesis in mammals. Front Physiol 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ji P, Murata-Hori M, Lodish H (2011) Formation of mammalian erythrocytes: chromatin condensation and enucleation. Trends Cell Biol 21:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Migliaccio AR (2010) Erythroblast enucleation. Haematologica 95:1985–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu J, Guo X, Mohandas N et al (2010) Membrane remodeling during reticulocyte maturation. Blood 115:2021–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. An X, Schulz VP, Li J et al (2014) Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood 123:3466–3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bell AJ, Satchwell TJ, Heesom KJ et al (2013) Protein distribution during human erythroblast enucleation in vitro. PLoS One 8:e60300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wong P, Hattangadi SM, Cheng AW et al (2011) Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes. Blood 118:e128–e138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF (2011) From stem cell to red cell: regulation of erythropoiesis at multiple levels. Blood 118:6258–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paulson RF, Shi L, Wu DC (2011) Stress erythropoiesis: new signals and new stress progenitor cells. Curr Opin Hematol 18:139–145

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chasis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112:470–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manawani D, Bieker JJ (2008) The erythroblastic island, Chapter 2. Curr Top Dev Biol 82:23

    Article  Google Scholar 

  12. Lee JC-M, Gimm JA, Lo AJ et al (2004) Mechanism of protein sorting during erythroblast enucleation: role of cytoskeletal connectivity. Blood 103:1912–1919

    Article  CAS  PubMed  Google Scholar 

  13. Konstantinidis DG, Pushkaran S, Johnson JF et al (2012) Signaling and cytoskeletal requirements in erythroblast enucleation. Blood 119:6118–6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koury ST, Koury MJ, Bondurant MC (1989) Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts. J Cell Biol 109:3005–3013

    Article  CAS  PubMed  Google Scholar 

  15. Pawley JB (ed) (2006) Handbook of biological confocal microscopy. Springer, New York, NY

    Google Scholar 

  16. Nowak RB, Papoin J, Gokhin DS, Casu C, Rivella S, Lipton JM, Blanc L, Fowler VM (2017) Tropomodulin 1 controls erythroblast enucleation via regulation of F-actin in the enucleosome. Blood 130(9):1144–1155

    Article  PubMed  Google Scholar 

  17. Sui Z, Nowak RB, Bacconi A, Kim NE, Liu H, Li J, Wickrema A, An X, Fowler VM (2014) Tropomodulin3-null mice are embryonic lethal with anemia due to impaired erythroid terminal differentiation in the fetal liver. Blood 123:758–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gokhin DS, Fowler VM (2011) Cytoplasmic γ-actin and tropomodulin isoforms link to the sarcoplasmic reticulum in skeletal muscle fibers. J Cell Biol 194:105–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Preparation of slides and coverslips for microscopy. Cold Spring Harb Protoc 2008:pdb.prot4988–pdb.prot4988

    Google Scholar 

  20. Waterman-Storer CM (2001) Microtubule/organelle motility assays. Curr Protoc Cell Biol. Chapter 13, Unit 13.1

    Google Scholar 

  21. Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pantel K, Loeffler M, Bungart B, Wichmann HE (1990) A mathematical model of erythropoiesis in mice and rats. Part 4: Differences between bone marrow and spleen. Cell Tissue Kinet 23:283–297

    CAS  PubMed  Google Scholar 

  23. Latunde-Dada GO, McKie AT, Simpson RJ (2006) Animal models with enhanced erythropoiesis and iron absorption. Biochim Biophys Acta 1762:414–423

    Article  CAS  PubMed  Google Scholar 

  24. Bernas T, ZarÉBski M, Cook RR, Dobrucki JW (2004) Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: role of anoxia and photon flux. J Microsc 215:281–296

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velia M. Fowler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Smith, A.S., Nowak, R.B., Fowler, V.M. (2018). High-Resolution Fluorescence Microscope Imaging of Erythroblast Structure. In: Lloyd, J. (eds) Erythropoiesis. Methods in Molecular Biology, vol 1698. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7428-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7428-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7427-6

  • Online ISBN: 978-1-4939-7428-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics