Erythropoiesis pp 175-192 | Cite as

Analysis of Erythropoiesis Using Imaging Flow Cytometry

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1698)

Abstract

Erythroid maturation has been classically defined based on the remarkable changes visualized through microscopy. These involve the decrease in cell size, nuclear condensation and organelle loss, and include the final unique asymmetric division creating the short-lived nucleated pyrenocyte and the enucleate reticulocyte that matures into the red blood cell. Understanding the regulation of these processes has been challenging due to the difficulty in obtaining sufficient numbers of cells, particularly of rare intermediates, to study by microscopy. While flow cytometry can provide quantitative analysis of high cell numbers as well as critical tools for assaying processes like cell cycle, apoptosis and cell signaling, it cannot analyze or categorize cells based on morphology. Imaging flow cytometry (IFC) combines microscopy and flow cytometry by capturing brightfield and fluorescent images of large numbers of cells, which can be quantitated for both morphometric and fluorescent characteristics. Over the past 10 years, this approach has been increasingly used to study aspects of erythropoiesis. This chapter describes how to utilize IFC to enumerate multiple specific stages of erythropoiesis from primary tissue, as well as how to culture primary progenitors to enrich for the rare late stage enucleating cells in order to examine intracellular proteins involved in enucleation. These methods demonstrate the approaches and strength of IFC as a tool to bridge the power of microscopy and flow cytometry to more fully interrogate erythropoiesis.

Key words

Erythropoiesis Erythroblast Enucleation Bone marrow ImageStream Imaging flow cytometry 

Notes

Acknowledgments

The authors thank Seana Catherman for technical support and the Flow Cytometry Core Facility at the University of Rochester Medical Center and the Research Flow Cytometry Core at Cincinnati Children’s Hospital Research Foundation National Institutes of Health (NHLBI) grant R01HL116352 (T.A.K.) and Michael Napoleone Memorial Foundation and the NIH/NHLBI (R01 HL130670; R01 HL116364 (K.E.M))

References

  1. 1.
    McGrath KE, Bushnell TP, Palis J (2008) Multispectral imaging of hematopoietic cells: where flow meets morphology. J Immunol Methods 336(2):91–97. doi: 10.1016/j.jim.2008.04.012 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    McGrath KE, Kingsley PD, Koniski AD, Porter RL, Bushnell TP, Palis J (2008) Enucleation of primitive erythroid cells generates a transient population of “pyrenocytes” in the mammalian fetus. Blood 111(4):2409–2417. doi: 10.1182/blood-2007-08-107581 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Peslak SA, Wenger J, Bemis JC, Kingsley PD, Koniski AD, McGrath KE, Palis J (2012) EPO-mediated expansion of late-stage erythroid progenitors in the bone marrow initiates recovery from sublethal radiation stress. Blood 120(12):2501–2511. doi: 10.1182/blood-2011-11-394304 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Malik J, Kim AR, Tyre KA, Cherukuri AR, Palis J (2013) Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts. Haematologica 98(11):1778–1787. doi: 10.3324/haematol.2013.087361 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Konstantinidis DG, Pushkaran S, Giger K, Manganaris S, Zheng Y, Kalfa TA (2014) Identification of a murine erythroblast subpopulation enriched in enucleating events by multi-spectral imaging flow cytometry. J Vis Exp 88. doi: 10.3791/50990
  6. 6.
    Liang R, Camprecios G, Kou Y, McGrath K, Nowak R, Catherman S, Bigarella CL, Rimmele P, Zhang X, Gnanapragasam MN, Bieker JJ, Papatsenko D, Ma'ayan A, Bresnick E, Fowler V, Palis J, Ghaffari S (2015) A systems approach identifies essential FOXO3 functions at key steps of terminal erythropoiesis. PLoS Genet 11(10):e1005526. doi: 10.1371/journal.pgen.1005526 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Malik J, Getman M, Steiner LA (2015) Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation. Mol Cell Biol 35(12):2059–2072. doi: 10.1128/MCB.01413-14 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gnanapragasam MN, McGrath KE, Catherman S, Xue L, Palis J, Bieker JJ (2016) EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation. Blood 128:1631. doi: 10.1182/blood-2016-03-706671 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bessis M (1973) Living blood cells and their ultrastructure. Springer, BerlinGoogle Scholar
  10. 10.
    Palis J (2014) Primitive and definitive erythropoiesis in mammals. Front Physiol 5:3. doi: 10.3389/fphys.2014.00003 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McGrath KE, Catherman SC, Palis J (2016) Delineating stages of erythropoiesis using imaging flow cytometry. Methods 112:68. doi: 10.1016/j.ymeth.2016.08.012 CrossRefPubMedGoogle Scholar
  12. 12.
    Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T, Marden MC, Wajcman H, Douay L (2005) Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 23(1):69–74. doi: 10.1038/nbt1047 CrossRefPubMedGoogle Scholar
  13. 13.
    Konstantinidis DG, Pushkaran S, Johnson JF, Cancelas JA, Manganaris S, Harris CE, Williams DA, Zheng Y, Kalfa TA (2012) Signaling and cytoskeletal requirements in erythroblast enucleation. Blood 119(25):6118–6127. doi: 10.1182/blood-2011-09-379263 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    England SJ, McGrath KE, Frame JM, Palis J (2011) Immature erythroblasts with extensive ex vivo self-renewal capacity emerge from the early mammalian fetus. Blood 117(9):2708–2717. doi: 10.1182/blood-2010-07-299743 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N (2009) Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A 106(41):17413–17418. doi: 10.1073/pnas.0909296106 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu J, Zhang J, Ginzburg Y, Li H, Xue F, De Franceschi L, Chasis JA, Mohandas N, An X (2013) Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis. Blood 121(8):e43–e49. doi: 10.1182/blood-2012-09-456079 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kalfa TA, Pushkaran S, Zhang X, Johnson JF, Pan D, Daria D, Geiger H, Cancelas JA, Williams DA, Zheng Y (2010) Rac1 and Rac2 GTPases are necessary for early erythropoietic expansion in the bone marrow but not in the spleen. Haematologica 95(1):27–35. doi: 10.3324/haematol.2009.006239 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Koulnis M, Pop R, Porpiglia E, Shearstone JR, Hidalgo D, Socolovsky M (2011) Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay. J Vis Exp 54. doi: 10.3791/2809
  19. 19.
    Filby A, Davies D (2012) Reporting imaging flow cytometry data for publication: why mask the detail? Cytometry A 81(8):637–642. doi: 10.1002/cyto.a.22091 CrossRefPubMedGoogle Scholar
  20. 20.
    Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama Y, Nagata S (2005) Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 437:754–758. doi: 10.1038/nature03964 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.University of Cincinnati Medical SchoolCincinnatiUSA
  3. 3.Department of Pediatrics, Center for Pediatric Biomedical ResearchUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations